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Spatial epidemic network models with viral dynamics
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A mathematical model is presented for the spread of viral diseases within human or other populations in
which both the dynamics of viral growth within individuals and the interactions between individuals are taken
into account. We thus bridge the classical macroscopic approach to the growth and population dynamics of
disease at the microscopic level. Each memheof the population of individuals is represented by a vector
function of time whose components are antibody numbgy, and the virion leveb;(t). These quantities
evolve according to 2 differential equations, which are coupled via a transmission ma&tnxith elements
Bij » 1,i=1,..n, such thaig;;v; is the expected rate of transmission of infectious particles from individteal
individual j. We study nearest-neighbor interaction and transmission which declines exponentially with dis-
tance between the individuals. Results are shown to be related to those of classical mact8éeppiodels.

We find threshold effects in the occurrence of epidemics as the parameters of the viral and antibody dynamics
change. The distribution of the final size of an epidemic is estimated, for various initial patterns of infection,
at various values of the parameter which describes the mobility of the population. We also determine the final
size in the cases of extreme clustering and dispersion of infected indivi§8aR63-651X98)11902-5

PACS numbdss): 87.10+€, 05.40+j, 02.50~r

INTRODUCTION DESCRIPTION OF THE MODEL

The immune response to viral infection involves a com-

There has been much interest recently in coupled dynamp_licated set of_ reactions _that depends on the_nature of _the
drus and the immunological response properties of the in-

cal systems representing networks of connected elemen}’ected individual. A simpiif ; . ;
. . . . . . . plified dynamical system is obtained
with anq W'th.OUt n0|s<£_1]. In this a_r'ucle we consider such a Ey supposing that there are two principal variables of inter-
system 'n,Wh'Ch _th(_a prime focu; is the growth_ and spread o st; the antibody population and the viral population. These
virus particles within a population of susceptible hosts. Wemay represent different quantities in various conditions such
first consider a Slmp|e deterministic mOdel, which neVertheas densities in p|asma’ total numbersy or numbers in Specific
less incorporates the stochastic nature of transmission. Thsody organs or tissues. However, we gather antibody par-
advantage of the present approach is that one can analyze tlieles into one dynamical variable and invading disease-
spread of disease in terms of empirically determined parameausing particles into another dynamical variable. A similar
eters that describe the microscopic dynamics of the underlyprocedure has been adopted in recent modeling studies in-

ing viral organisms and a quantitative knowledge of demo-cluding those on HI[9] with three or more basic variables.
graphic factors. The importance of such an approach has
been emphasized recently by the World Health Organization
in its endeavors to manage the threat of many emerging We consider a population of individuals. At timet, let

(HIV, ebola and resurgenttuberculosis, malaria, cholera @i(t) be the antibody response in theh individual and
diseases. v;(t) be the viral charge in that individual where

The mathematical study of the spread of diseases has =al,2,...n. In accordance with experimental evidence on vi-

; N ] ral charge and immune responsd] a pair of basic equa-
rapidly growing literature: seg2] for an early comprehen- o venresenting the antibody and viral populations have
sive treatment anfB,4] for some more recent developments paan given[3]. In a network of connected individuals we
in quantitative theories for the growth and spread of diseasgaye the following system of coupled equations:
and methods for data analysis. Many recent studies of the

Network equations

spread of particular diseases have used classical or semiclas- da =N\, — 43+ €av; 1)
sical modelq5]. Others have considered stochastic aspects, dt v e
usually leading to random processes of the Markov chain or q N
branching process typE5s]. A discrete state-space spatial Ui
A . ) ——=rv;— yiav;+
model with either the random arrival of new susceptibles or ar "o vtk ,z. Aiivi @

their delayed arrival and with nearest-neighbor interaction N L
was employed if7] and in[8] a stochastic network epi- Here the parameters for individuiahre as follows\; is the

demic model with imposed threshold conditions was intro—rate of producno_n af‘d’o.r transport of anF'bOd'%".S th_e
duced. death rate of antibodies; is rate of production of antibodies

induced by a unit viral populatiomn; is the intrinsic growth
rate of viral population, and; is the rate of destruction of
viruses by a unit antibody population. The functibnis a
*Address after April 1998: Mathematics, UCI, Irvine, CA 92717. possibly nonlinear function that describes the rate of growth
Electronic address: tuckwell@b3e.jussieu.fr of the viral population due to external sources of the virus,
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namely, the remainingh—1 members of the population. SOLUTIONS FOR THE NETWORK MODEL
However,F may also depend on additional variables as we
explain below.

The form of the transmission ter(t)=2[,8;v; is
justified by supposing that invading particles that arrived a

Since Eq(2) has solutions that may become unbounded if
the immune response is switched off we have modified the
rowth term for the viral population to give rise to saturation

. ) . t levelk; <
an earlier time have been removed. Thus the effective quan-
tity of virions, with the power to infect, arriving at individual do v n
i from other members of the population in the time interval _':rivi( 1— _') —vavi+F E Bjiv; |- ©)
(t—ﬁt,t) IS dt kl j#I

However, we assume thit= k for all members of the popu-
t N lation. We consider two kinds of transmission matrices. In
Tf(tﬁt):f > Bjivj(s)ds. the first transmission is restricted only to an individual’s
—ou nearest neighboso that

If 6t is small, this may be approximated by Bij=B(8i 1% 8ij-1). (4)
Here, §;; is Kronecker’s delta; that is, it is unity if=j and
n zero otherwise. The constagtis non-negative and deter-
Ti*%‘stj; Bjivi(s)=T(t)ét. mines the overall strength of transmission. Secondly, we

have considered the case of transmission, which deofires
ponentiallywith distance so that

Individual solutions Bij=pB(1—5;)e il )

Without interaction terms the system defined dbg/dt
=N—pa+eav, dv/dt=rv—yav has critical points aP,
=(NMu,0) and P,=(r/y,(u—y\Ir)/e). Analysis [11]
shows that eitheP, is an asymptotically stable node aRd
is at unphysical values d?, is an unstable saddle point and

wherew is another positive constant. Smallleads to wide-
spread influence, whereas larges associated with princi-
pally local spread. Populations in which there is great mobil-
ity and frequent interactions will have a small valueaofin

" empirical terms, we define= /i~ suitably normalized as

P is an asymptotically stable node or spiral point. We avoidi,e nrobapility per unit time that individual i interacts with

recurrent outbregks and .mgk_e the time course of the &g qiyiqyal j, or as the expected number of interactions per
sponses in each infected individual the same. We assume fori time between these individuals. df=0. the transmis-

simplicity in the numerical examples that all five parametersgi o is uniform withg,; = B(1— &), which is equivalent to

&\, M T and y are t_he same for gach individual even homogeneous mixing as in many classical models.
though it is clear that in real populations these parameters

will have probability distributions. There are three situations
in which outbreaks may be nonrecurrent. Firstly,Pf is
asymptotically stable and, is unphysical, secondly, P, is We chose the following set of parameter values as stan-
unstable andP, is an asymptotically node, and thirdly,B;  dard, guided in part by3] and the conditionr=Ay/u:e
and P, coincide. We have chosen the latter because it ob=0.01,k=50,A=0.5, ©=0.05,r=1, y=0.1. In the system
tains from setting the period, given approximately (sge of equations without interaction, if(t) is any positive value
[3]) T~2x(ru—Ny) Y2 to infinity, and there is no possi- for somet,=0, then the paifa(t),v(t)] commences on an
bility of multiple outbreaks. orbit from [a(tg),v(tg)], which ends up at the equilibrium
The elementg;; of thetransmission matriB, represent-  point P, which is(10,0 with the standard set of parameters.
ing the strength of transmission fromto i may depend on We chose a threshold valumg1 of v so that if for individual

spatial factors; these elements are multiplied by the vira| not yet afflicted with the disease, the total number of viri-
pOpulatlon n the transm|tt|ng |nd|V|duaI. We assume thatons received per unit time first exceedg'q at timeti , then

while transmission occursom individualj to individuali, 4 '\ o6 ofy; at that instant jumped to;(t) =v,. Let the

Bjivj is theexpected number of viruses transmitted per UNitees of all individuals be\={1,2,...n} and let the set of ini-

time from j to i: We therefore retain a stochastic approaci.'ltially (t=0) infected individuals b&,CN. If i € Ny, then
but use approximate expected values. Thus whenever an in-, : -

2 ; ; ; . vi(0)=vg. If 1€Np, then v;(0)=0 and let t;
dividual is a host to a viral population, there is always a=inf{t|2” Bivi(t)=v, }. Then
chance that viruses may be transmitted from that individual J#IPIZIRE = Y ey
to others and in particular to others who do not yet carry the
virus—in contrast with the classical notion of a discontinu- do,
ousinfectious periodNote that Eq(2) incorporates théoss at
of viruses by a transmitting individual into the temu; . In rvi
order to describe the macroscopic state of the population, we
introduce the total viral populatio¥,(t)=2_,v;(t), andits  This means that her& is replaced byF(x,t;)=vyd(x
average across the populatidift)=\V(t)/n. Similarly one  —vc,)8(t—t;), wheret; is the time at whictT; reaches .
may define an average antibody lev&(t). The results do not depend critically on the choices of either

Standard parameters and initial conditions

0, 0St<t| y
(6)

LU

il vajv;, >t;.
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the threshold parameters or the initial values of the dynami-
cal variables. Alternatively a suitable nonlinear function can 4

be used as the source term of the virions, which is negative at
small viral numbers. A cubic, which has found widespread 35 N \ B= o
application in nonlinear threshold models in physics and 5 : ; o
neurobiology, is one such function so that in the absence of 3 3T ~rnring
external sources Z25 | ” 'i ‘\\
5 L\ B-o0s
= b
dv v > 27 G
a=g(a,v)=rv(l—E)(v—@)—yav, (7) %1.5 ] | 1‘
} =,
o o
Z |
where 0< 6<k. Using an equation such as this as a starting | \
point for a network model makes the dynamical system very 0.5 Vo
similar to those used in neuronal network modeling as sig- NN
naled in[8]. For the corresponding antibody equations we 0 T
employ a similar condition. Thus, ife Ng, thena;(0)=0 0 50 100
andda; /dt remains at zero until that particular tirhewhen Time

v;(t) first reaches the critical valuecl. Thus all orbits of FIG. 1. Average virion level, fog=0.1 andg=0.05, withn

diseased individuals commence at the poin ¢f, Note that =25 individuals when there is one initially infected individual who
because of this procedure, which we have introduced in ordes situated either at the centétot-dashed curvgor ati=6 (solid

to make the &,v) orbits the same for each infected indi- curves. Based on a quantitative study of influenza virus, units of
vidual, Eq.(1) does not apply untit=t; . time can be taken as approximat& h and for viral numbers, 19
per ml of infected tissue—see text afid].

Relation to SIR models . . . A . A
tion of distance. If there is just one initially infected indi-

In classical models the population is divided into groupsyiqual then the threshold condition is thatB<v .. e%/v ma
such asS for susceptibles,| for infectives, andR for 1

removed—seg2]. Sometimes a further distinction is made there can be no spread.
between those individuals who are infected but not infec- o ] ) -
tious, giving groupE as well. In the present model the dis- Stochastic initial configuration and dependence on mobility
eased individuals have a continuum of states. However, a Suppose a fractiop of the population is initially infected.
further critical valuev ¢, of v can be introduced such that the We choose the positions gin initially infected individuals
ith individual is classified as in each of the grohd, orR  according to a discrete uniform distribution oM
according to the following criteria. Before tinte the indi-  =1{1,2,...n} and callp the initial rate of infection. That is, we
vidual is in groupS; between the time; and the timet; ~ generatepn (or the greatest integer contained theyeirde-
whenv; falls to v, the individual is in groud; then, after pendent random variables 6h Because there is a chance of
the level drops below_ the individual is classed as tyfe repeats, espeqlally 'h s small and/orp is Iarge,_we keep
2 generating untipn distinct sites have been obtained.

It is then of interest to see how the spread of disease
depends, for fixe@, on changes in the mobility parameter
We first illustrate the application of the model to a small and on the initial configuration. With an initial rate of infec-
population with nearest-neighbor interaction. Wit 25 we  tion of p=0.1 we solved the network equations. We first
considered the simplest situation in which there is only ondllustrate the large difference in behavior of solutions ob-
infected att=0. The critical viral influx rate was set a,  tained with a relatively small change in the valuecfFig-
=0.1 and the standard orbit hag=0.05. Figure 1 shows ures Za) and 2b) show three-dimensional plots for the
the time course of the average virion le¥eihen individual ~ course of the disease for two values4f0.75 and 0.8. In
i=6 or the center individual=13 is the first to carry the both cases the sanfeandomly choseninitial distribution of
disease when the transmission paramger0.1 and forg No={417,15,23,57,60,58,91'9913999? n=101. Note that
—0.05. In Fig. 1 we have indicated possible units for viralthere are about 2101 different initial configurations. In
and antibody densities based on approximate figures for irFi9- 2@ there is insufficient mobility witha=0.8 for the
fluenza type A virug12,13. However, these and other units diseéase to spread to more than a few of the initially unin-
in subsequent figures are not precisely defined—magnitudd§cted individuals. If there are two infecteds close enough,
of responses depend on the amount and nature of infectdf€y may start minor local spread as occurs around individu-
tissue. als 57 and 60, for example. However, some individuals con-
tribute not at all to the spread of disease through lack of
cooperative effects. On the other hand, a small increase in
mobility with «=0.7 shows, in Fig. @), how the entire

In all the following results we assume a transmission majpopulation is ultimately infected even though the initial con-
trix whose coefficients are an exponentially decreasing funcfiguration is the same. Clearly between these two values of

1. Nearest-neighbor interactions

2. Exponentially decreasing transmission
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Virion level

90
(@) Individual number 100" o

Virion level

Time

(b) Individual number 100 g

FIG. 2. (a),(b) Graphical representation of the virion levels across the population. Units as in Fig. 1. Random initial configuration but the
same in botha) and(b). In (a) the population is less mobilex(=0.8) than in(b) (a=0.7).

500 z

there is a critical valuer., depending on the other param- T
eters, but particularly on the initial configuration, below '/.’f"“ Removed
which there is spread to the entire population and above #9400 | a
which there is only local spread. S -

Results with a stochastic initial condition were converted -'g N
to the classica$,|,R variables. An example is shown in Fig. 5300 | i
3 for n=500, an infection ratey=0.1 and «=0.75. The £ 7
forms of these trajectories depend strongly on the parameters © /!
of the antibody-virus dynamical equations and have charac-  §200 | [{|: Infected
teristic shapes for particular infectious particles for a given 'E
initial configuration. é’ .

100 ] !
Prevalence and final size ,J' Susceptible

We describe some results for the effects of changing the o L ,
parameters of the virion-antibody population dynamical sys- 0 100 200 300
tem. LetP,(t), theinduced prevalencat timet, be the ratio Time

of the number of new cases to the total susceptible popula-
tion att=0. Thus ifn,(t) denotes the number of individuals  FIG. 3. S,I,R variables vs time for exponentially decreasing

who are infected att, then P,(t)=[n,(t)—n,(0)]/[n transmission, a stochastic initial condition, ane-500. Time in
—n,(0)]. Clearly P;(0)=0 and O<P(t)<1 for all t>0.  units of 5 h.
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"oz oo oo vo T FIG. 5. Final size is plotted against the parametédimension-
T less or per unit distance between individydts 50 different, ran-

domly generated initial configurations. The estimated mean and
FIG. 4. The dependence of the final siBg (dimensionless 95% confidence intervals are shown.

quantity between 0 and) bf the epidemic on the microscopic vari-

abler, whose units may be taken as (5 1) rate at 0.1 and used a populationne 110 for specific initial
conditions defined as follows: EdgeNy,={1,2,...,10;

The quantityP,(t) is a measure of the degree of penetrationmiddle: No={51,52,...,69; and uniform:  Ng

of the susceptible population. Furthermore, we define the={6,17,28,...,94,105 In Fig. 6a) are shown the variations

final size of the epidemi@sPr=P,(), the total fraction of

the initially uninfected population to whom the disease is 1

transmitted. |
0.9 | !
|
Dependence on virion intrinsic growth rate 00-3 i
In Fig. 4 we show the variation iR asr changes for a §0-7 i
stochastic initial condition in a population of 100 individuals. %_o.s !
There is zero spread until the value 0.8, a slowly increas- ° |
ing final penetration of the epidemic until the valuwe go 5 i
=0.96 is attained, followed by an abrupt increase to the N 0.4 !
maximum value ofP-=1. Thus the final size depends very = |
. . L .. c0.3 1
nonlinearly on the intrinsic growth rate of the virion popula- & ! Edge
tion. A small change in virion growth rate, for example, by 0.2 !
changing environmental conditions or drug therapy, can hav 1 Middle
. . . . 0.1 | [
a dramatic effect on the degree to which the population is Uniform |}
invaded by a disease. We also investigated the effects ¢ 0 e
changing the antibody production rate Results for the de- 0.4 06 0.8 1 1.2 14 16 1.8
pendence of the epidemic’s final size analso shown a (a) o
sharp threshold. Thus a small change in this paramete
. , 900
which reflects the tone of the immune system, may also hav Edge
a drastic effect on the spread of disease throughout the pop! 800
lation. 'Emo L '
3. Changes in initial distribution %600 L . Middle
With parameters in the standard set we first randomly  S500 | '
generated 50 different initial configurations, witk- 100 and ‘c
a 10% initial rate of infection and determined the final size of ~ §4%0 ¢
the epidemic as a function of the parametern Fig. 5 are 300 |
shown plots ofPg versusa for the 50 different initial con- 5 Uniform
figurations. In addition, at each value @fve determined the Q200 ¢
sample mean and sample 95% confidence intervaBof 100
These are also marked on Fig. 5. Examination of the variou o ———J‘.'Jzﬂfmm.___n_,-

curves shows very sensitive behavior with respect to varia

tions in the configuration of the initially infected and the 0.4 06 08 1.0 1.2 14 16 1.8
envelope about the mean formed by the indicated confidenc (® o
intervals is very large relative to the mean. FIG. 6. (a). Final sizePr (dimensionlessplotted against the

We sought to delimit the extreme functional forms of the parameterx (dimensionless or per unit distance between individu-
final size of the epidemic as varied. To this end we have, als) for the three extreme cases of initial distribution described in
for parameters in the standard set, put the initial infectiorthe text.(b) Total duration of epidemic va.
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in final epidemic sizePr as a function ofa, for the three a single framework so that it is possible to examine the ef-
“extreme” initial configurations. When the initially infected fects of parameters at the microscopic level on the spread of
individuals are most dispersédniform casg¢the epidemic is disease within a population. We have found that there are
practically “all or none” with a sharp threshold at a critical threshold effects in many parameters at both the microscopic
value of the mobilitya~0.75. A larger value obcl gave level, such as and)\, and at the demographic level, such as
quite different results, indicative of the delicate interplay be- and B. It will be of interest to examine the effects of
tween the dynamical properties of viral growth within an vaccination on such threshold effects and such studies may
individual on the one hand and the mobility of individuals in P& useful in the formulation of public health policy. Equally
the population at large. If a disease is harder to establisknportant will be the analysis of stochastic effects when pa-
within an individual(higher viral thresholithen spread will rameters are near their threshold values to assess the prob-
be negligible unless the population is extremely molite abilities of occurrence of noise-induced epidemics analogous
smal). Similarly, a virus that readily establishes itself within 10 noise-induced activity in neurons and neural networks
individuals will pervade an entire population even if the in- [11,12. We will consider recurrent diseases, which may oc-
dividuals in the population at large interact very little Cur when the condition for an infinite period is relaxed, in a
amongst themselves. future article. We conclude by pointing out that more realis-
When the initially infected individuals occur in one region tic features of population dynamics can be included in easily
at theedge the threshold effect with respect to variations in Solved models such as the following in two space dimen-
a is blunted or smoothed out, as can be seen in Fig.. 6 SIONS.
There are now chances for partial epider‘rﬂbe_, with P (i) Discrete model with noisénstead of employing only one position index
<1) for values ofa between 0.77 and 1.15. However, when {d 2 \iaiais Bt the paints of & orid or /tfice. Labeiing the iatice pomis
a is Significantly greater than the value at which the epi-(i ), withi=1,2,..m; j=1,2,...n, we may put, using the simplest form for
demic is total Pr=1), the spread is very limited and the the intrinsic viral growth rate,
epidemic is still practically an “all or none” phenomenon.
In distinction to this, when the initially infected individuals da; _
are all in the central region, case “middle,” there is a much Tar N M€y, (8)
less well defined threshold effect asvaries. The final size
of the epidemic is practically independent of the mobility,

dl)ij nol
for 1.6< a<1.8. ar v st e kEl k22 Pttt
. . . dW:
Duration of the epidemic + o dtu _ )

For the same configurations of initially infected individu-
als as described in the preceding section, we have also found . .
the duration of the epidemic, defined as the time intervaliere théW; aremnindependent standard Wiener processes
between the arrival of the first individuals infected and the@Nd Summation is over than—1 points# (i,); the o;; are
time after which there are no new cases of the disease. FiguFB€aSUres of the noise amplitudes. _ _

6(b) shows the duration versug For the dispersed initial _ (il) Continuous approximationif the population density
infected group if there is an epidemic it is fast and total. For'S |2rgé one may turn to a continuous approximation in two
the clustered case “edge” there is a rapid rise in the duratiorpPac€ dimensions. We la{x,y,t) andv(x,y,t) be the anti-

of the epidemic asr increases through the small values of body and virion densities in a two-dimensional region. Then
this parameter where the final sizeAg= 1. Thus there may the two equations

be a very rapid total epidemic or one that takes a very long

time, but is still nevertheless of total penetration. Similar Ja

effects, but to a lesser extent, occur for the other clustered ot AT uateav, (10
initial condition “middle.” We have also found that there

are epidemics of the same duration which may be of radi-

cally different sizes, even for the same initial condition. a_l;:g(a,v)+|:

X2 (Y2
f B(w,z,y,x)v(w,z,t)dwdz
X1 Y1

DISCUSSION
may be used to describe the evolution of the viral population

The spread of disease involves the interplay of tWOj, the chosen region. We plan to report on these and other
classes of important dynamical processes. One is the mechgyiansions of the basic model in future articles.

nism of transmission, which may be through direct social

processes or via secondary agents such as in the case of

malaria. The other component is the evolution of the invad- ACKNOWLEDGMENTS
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