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Spatial epidemic network models with viral dynamics
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A mathematical model is presented for the spread of viral diseases within human or other populations in
which both the dynamics of viral growth within individuals and the interactions between individuals are taken
into account. We thus bridge the classical macroscopic approach to the growth and population dynamics of
disease at the microscopic level. Each member,i , of the population ofn individuals is represented by a vector
function of time whose components are antibody numbersai(t), and the virion levelv i(t). These quantities
evolve according to 2n differential equations, which are coupled via a transmission matrixB with elements
b i j , i , j 51,...,n, such thatb i j v i is the expected rate of transmission of infectious particles from individuali to
individual j . We study nearest-neighbor interaction and transmission which declines exponentially with dis-
tance between the individuals. Results are shown to be related to those of classical macroscopic~SIR! models.
We find threshold effects in the occurrence of epidemics as the parameters of the viral and antibody dynamics
change. The distribution of the final size of an epidemic is estimated, for various initial patterns of infection,
at various values of the parameter which describes the mobility of the population. We also determine the final
size in the cases of extreme clustering and dispersion of infected individuals.@S1063-651X~98!11902-5#

PACS number~s!: 87.10.1e, 05.40.1j, 02.50.2r
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INTRODUCTION

There has been much interest recently in coupled dyna
cal systems representing networks of connected elem
with and without noise@1#. In this article we consider such
system in which the prime focus is the growth and spread
virus particles within a population of susceptible hosts. W
first consider a simple deterministic model, which nevert
less incorporates the stochastic nature of transmission.
advantage of the present approach is that one can analyz
spread of disease in terms of empirically determined par
eters that describe the microscopic dynamics of the unde
ing viral organisms and a quantitative knowledge of dem
graphic factors. The importance of such an approach
been emphasized recently by the World Health Organiza
in its endeavors to manage the threat of many emerg
~HIV, ebola! and resurgent~tuberculosis, malaria, cholera!
diseases.

The mathematical study of the spread of diseases h
rapidly growing literature: see@2# for an early comprehen
sive treatment and@3,4# for some more recent developmen
in quantitative theories for the growth and spread of dise
and methods for data analysis. Many recent studies of
spread of particular diseases have used classical or sem
sical models@5#. Others have considered stochastic aspe
usually leading to random processes of the Markov chain
branching process type@6#. A discrete state-space spati
model with either the random arrival of new susceptibles
their delayed arrival and with nearest-neighbor interact
was employed in@7# and in @8# a stochastic network epi
demic model with imposed threshold conditions was int
duced.

*Address after April 1998: Mathematics, UCI, Irvine, CA 9271
Electronic address: tuckwell@b3e.jussieu.fr
571063-651X/98/57~2!/2163~7!/$15.00
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DESCRIPTION OF THE MODEL

The immune response to viral infection involves a co
plicated set of reactions that depends on the nature of
virus and the immunological response properties of the
fected individual. A simplified dynamical system is obtain
by supposing that there are two principal variables of int
est; the antibody population and the viral population. The
may represent different quantities in various conditions s
as densities in plasma, total numbers, or numbers in spe
body organs or tissues. However, we gather antibody p
ticles into one dynamical variable and invading disea
causing particles into another dynamical variable. A simi
procedure has been adopted in recent modeling studies
cluding those on HIV@9# with three or more basic variables

Network equations

We consider a population ofn individuals. At timet, let
ai(t) be the antibody response in thei -th individual and
v i(t) be the viral charge in that individual wherei
51,2,...,n. In accordance with experimental evidence on
ral charge and immune response@10# a pair of basic equa-
tions representing the antibody and viral populations h
been given@3#. In a network of connected individuals w
have the following system of coupled equations:

dai

dt
5l i2m iai1e iaiv i , ~1!

dv i

dt
5r iv i2g iaiv i1FF(

j Þ i

n

b j i v j G . ~2!

Here the parameters for individuali are as follows:l i is the
rate of production and/or transport of antibodies,m i is the
death rate of antibodies,e i is rate of production of antibodie
induced by a unit viral population,r i is the intrinsic growth
rate of viral population, andg i is the rate of destruction o
viruses by a unit antibody population. The functionF is a
possibly nonlinear function that describes the rate of grow
of the viral population due to external sources of the vir
2163 © 1998 The American Physical Society
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namely, the remainingn21 members of the population
However,F may also depend on additional variables as
explain below.

The form of the transmission termTi(t)5S j Þ i
n b j i v j is

justified by supposing that invading particles that arrived
an earlier time have been removed. Thus the effective qu
tity of virions, with the power to infect, arriving at individua
i from other members of the population in the time interv
(t2dt,t) is

Ti* ~ t,dt !5E
t2dt

t

(
j Þ i

n

b j i v j~s!ds.

If dt is small, this may be approximated by

Ti* 'dt(
j Þ i

n

b j i v j~s!5Ti~ t !dt.

Individual solutions

Without interaction terms the system defined byda/dt
5l2ma1eav, dv/dt5rv2gav has critical points atP1
5(l/m,0) and P25„r /g,(m2gl/r )/e…. Analysis @11#
shows that eitherP1 is an asymptotically stable node andP2
is at unphysical values orP1 is an unstable saddle point an
P2 is an asymptotically stable node or spiral point. We av
recurrent outbreaks and make the time course of the
sponses in each infected individual the same. We assum
simplicity in the numerical examples that all five paramet
e, l, m, r , and g are the same for each individual eve
though it is clear that in real populations these parame
will have probability distributions. There are three situatio
in which outbreaks may be nonrecurrent. Firstly, ifP1 is
asymptotically stable andP2 is unphysical, secondly, ifP1 is
unstable andP2 is an asymptotically node, and thirdly, ifP1
and P2 coincide. We have chosen the latter because it
tains from setting the period, given approximately by~see
@3#! T'2p(rm2lg)21/2, to infinity, and there is no possi
bility of multiple outbreaks.

The elementsb j i of the transmission matrixB, represent-
ing the strength of transmission fromj to i may depend on
spatial factors; these elements are multiplied by the v
population in the transmitting individual. We assume th
while transmission occursfrom individual j to individual i ,
b j i v j is theexpected number of viruses transmitted per u
time from j to i . We therefore retain a stochastic approa
but use approximate expected values. Thus whenever a
dividual is a host to a viral population, there is always
chance that viruses may be transmitted from that individ
to others and in particular to others who do not yet carry
virus—in contrast with the classical notion of a discontin
ous infectious period. Note that Eq.~2! incorporates theloss
of viruses by a transmitting individual into the termr iv i . In
order to describe the macroscopic state of the population
introduce the total viral population,V(t)5S i 51

n v i(t), and its
average across the populationV̄(t)5V(t)/n. Similarly one
may define an average antibody level,Ā(t).
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SOLUTIONS FOR THE NETWORK MODEL

Since Eq.~2! has solutions that may become unbounded
the immune response is switched off we have modified
growth term for the viral population to give rise to saturati
at levelki,`:

dv i

dt
5r iv i S 12

v i

ki
D2g iaiv i1FF(

j Þ i

n

b j i v j G . ~3!

However, we assume thatki5k for all members of the popu
lation. We consider two kinds of transmission matrices.
the first transmission is restricted only to an individua
nearest neighborso that

b i j 5b~d i , j 111d i , j 21!. ~4!

Here,d i j is Kronecker’s delta; that is, it is unity ifi 5 j and
zero otherwise. The constantb is non-negative and deter
mines the overall strength of transmission. Secondly,
have considered the case of transmission, which declinesex-
ponentiallywith distance so that

b i j 5b~12d i j !e
2au i 2 j u, ~5!

wherea is another positive constant. Smalla leads to wide-
spread influence, whereas largea is associated with princi-
pally local spread. Populations in which there is great mo
ity and frequent interactions will have a small value ofa. In
empirical terms, we definee2au i 2 j u suitably normalized as
the probability per unit time that individual i interacts with
individual j, or as the expected number of interactions p
unit time between these individuals. Ifa50, the transmis-
sion is uniform withb i j 5b(12d i j ), which is equivalent to
homogeneous mixing as in many classical models.

Standard parameters and initial conditions

We chose the following set of parameter values as s
dard, guided in part by@3# and the conditionr 5lg/m:e
50.01,k550, l50.5,m50.05,r 51, g50.1. In the system
of equations without interaction, ifv(t) is any positive value
for somet0>0, then the pair@a(t),v(t)# commences on an
orbit from @a(t0),v(t0)#, which ends up at the equilibrium
point P, which is ~10,0! with the standard set of parameter
We chose a threshold valuevc1

of v so that if for individual

i , not yet afflicted with the disease, the total number of v
ons received per unit time first exceededvc1

at timet i , then

the value ofv i at that instant jumped tov i(t i)5v0 . Let the
set of all individuals beN5$1,2,...,n% and let the set of ini-
tially ( t50) infected individuals beN0#N. If i PN0 , then
v i(0)5v0 . If i P” N0 , then v i(0)50 and let t i

5 inf$tuS j Þ i
n b j i v j (t)>vc1

%. Then

dv i

dt
5H 0, 0<t,t i ,

rv i S 12
v i

k D2gaiv i , t.t i .
~6!

This means that hereF is replaced byF(x,t i)5v0d(x
2vc1

)d(t2t i), wheret i is the time at whichTi reachesvc1
.

The results do not depend critically on the choices of eit
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the threshold parameters or the initial values of the dyna
cal variables. Alternatively a suitable nonlinear function c
be used as the source term of the virions, which is negativ
small viral numbers. A cubic, which has found widespre
application in nonlinear threshold models in physics a
neurobiology, is one such function so that in the absenc
external sources

dv
dt

5g~a,v !5rvS 12
v
kD ~v2u!2gav, ~7!

where 0,u,k. Using an equation such as this as a start
point for a network model makes the dynamical system v
similar to those used in neuronal network modeling as s
naled in @8#. For the corresponding antibody equations
employ a similar condition. Thus, ifi PN0 , then ai(0)50
anddai /dt remains at zero until that particular timet i when
v i(t) first reaches the critical valuevc1

. Thus all orbits of

diseased individuals commence at the point (0,v0). Note that
because of this procedure, which we have introduced in o
to make the (a,v) orbits the same for each infected ind
vidual, Eq.~1! does not apply untilt5t i .

Relation to SIR models

In classical models the population is divided into grou
such asS for susceptibles,I for infectives, andR for
removed—see@2#. Sometimes a further distinction is mad
between those individuals who are infected but not inf
tious, giving groupE as well. In the present model the di
eased individuals have a continuum of states. Howeve
further critical valuevc2

of v can be introduced such that th

i th individual is classified as in each of the groupsS, I , or R
according to the following criteria. Before timet i the indi-
vidual is in groupS; between the timet i and the timet i8
whenv i falls to vc2

the individual is in groupI ; then, after

the level drops belowvc2
the individual is classed as typeR.

1. Nearest-neighbor interactions

We first illustrate the application of the model to a sm
population with nearest-neighbor interaction. Withn525 we
considered the simplest situation in which there is only o
infected att50. The critical viral influx rate was set atvc1

50.1 and the standard orbit hadv050.05. Figure 1 shows
the time course of the average virion levelV̄ when individual
i 56 or the center individuali 513 is the first to carry the
disease when the transmission parameterb50.1 and forb
50.05. In Fig. 1 we have indicated possible units for vi
and antibody densities based on approximate figures for
fluenza type A virus@12,13#. However, these and other uni
in subsequent figures are not precisely defined—magnitu
of responses depend on the amount and nature of infe
tissue.

2. Exponentially decreasing transmission

In all the following results we assume a transmission m
trix whose coefficients are an exponentially decreasing fu
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tion of distance. If there is just one initially infected ind
vidual then the threshold condition is that ifb,vc1

ea/vmax

there can be no spread.

Stochastic initial configuration and dependence on mobility

Suppose a fractionr of the population is initially infected.
We choose the positions ofrn initially infected individuals
according to a discrete uniform distribution onN
5$1,2,...,n% and callr the initial rate of infection. That is, we
generatern ~or the greatest integer contained therein! inde-
pendent random variables onN. Because there is a chance
repeats, especially ifn is small and/orr is large, we keep
generating untilrn distinct sites have been obtained.

It is then of interest to see how the spread of dise
depends, for fixedb, on changes in the mobility parametera
and on the initial configuration. With an initial rate of infec
tion of r50.1 we solved the network equations. We fir
illustrate the large difference in behavior of solutions o
tained with a relatively small change in the value ofa. Fig-
ures 2~a! and 2~b! show three-dimensional plots for th
course of the disease for two values ofa, 0.75 and 0.8. In
both cases the same~randomly chosen! initial distribution of
N05$4,7,15,23,57,60,78,91,99,100% for n5101. Note that
there are about 231013 different initial configurations. In
Fig. 2~a! there is insufficient mobility witha50.8 for the
disease to spread to more than a few of the initially un
fected individuals. If there are two infecteds close enou
they may start minor local spread as occurs around indivi
als 57 and 60, for example. However, some individuals c
tribute not at all to the spread of disease through lack
cooperative effects. On the other hand, a small increas
mobility with a50.7 shows, in Fig. 2~b!, how the entire
population is ultimately infected even though the initial co
figuration is the same. Clearly between these two values oa

FIG. 1. Average virion level, forb50.1 andb50.05, with n
525 individuals when there is one initially infected individual wh
is situated either at the center~dot-dashed curves! or at i 56 ~solid
curves!. Based on a quantitative study of influenza virus, units
time can be taken as approximately 5 h and for viral numbers, 1011

per ml of infected tissue—see text and@13#.



but the

2166 57TUCKWELL, TOUBIANA, AND VIBERT
FIG. 2. ~a!,~b! Graphical representation of the virion levels across the population. Units as in Fig. 1. Random initial configuration
same in both~a! and ~b!. In ~a! the population is less mobile (a50.8) than in~b! (a50.7).
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there is a critical valueac , depending on the other param
eters, but particularly on the initial configuration, belo
which there is spread to the entire population and ab
which there is only local spread.

Results with a stochastic initial condition were convert
to the classicalS,I ,R variables. An example is shown in Fig
3 for n5500, an infection rater50.1 anda50.75. The
forms of these trajectories depend strongly on the parame
of the antibody-virus dynamical equations and have char
teristic shapes for particular infectious particles for a giv
initial configuration.

Prevalence and final size

We describe some results for the effects of changing
parameters of the virion-antibody population dynamical s
tem. LetPI(t), the induced prevalenceat timet, be the ratio
of the number of new cases to the total susceptible pop
tion at t50. Thus ifnI(t) denotes the number of individual
who are infected att, then PI(t)5@nI(t)2nI(0)#/@n
2nI(0)#. Clearly PI(0)50 and 0<PI(t)<1 for all t.0.
-

ve

d
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FIG. 3. S,I ,R variables vs time for exponentially decreasin

transmission, a stochastic initial condition, andn5500. Time in
units of 5 h.



ion
th

is

ls.

th
ry
a-
y

av

s

te
a
op

l

o

ou
ria
e
n

he
,
io

i-

and

u-
in

57 2167SPATIAL EPIDEMIC NETWORK MODELS WITH VIRAL . . .
The quantityPI(t) is a measure of the degree of penetrat
of the susceptible population. Furthermore, we define
final size of the epidemicasPF5PI(`), the total fraction of
the initially uninfected population to whom the disease
transmitted.

Dependence on virion intrinsic growth rate

In Fig. 4 we show the variation inPF as r changes for a
stochastic initial condition in a population of 100 individua
There is zero spread until the valuer 50.8, a slowly increas-
ing final penetration of the epidemic until the valuer
50.96 is attained, followed by an abrupt increase to
maximum value ofPF51. Thus the final size depends ve
nonlinearly on the intrinsic growth rate of the virion popul
tion. A small change in virion growth rate, for example, b
changing environmental conditions or drug therapy, can h
a dramatic effect on the degree to which the population
invaded by a disease. We also investigated the effect
changing the antibody production ratel. Results for the de-
pendence of the epidemic’s final size onl also shown a
sharp threshold. Thus a small change in this parame
which reflects the tone of the immune system, may also h
a drastic effect on the spread of disease throughout the p
lation.

3. Changes in initial distribution

With parameters in the standard set we first random
generated 50 different initial configurations, withn5100 and
a 10% initial rate of infection and determined the final size
the epidemic as a function of the parametera. In Fig. 5 are
shown plots ofPF versusa for the 50 different initial con-
figurations. In addition, at each value ofa we determined the
sample mean and sample 95% confidence intervals ofPF .
These are also marked on Fig. 5. Examination of the vari
curves shows very sensitive behavior with respect to va
tions in the configuration of the initially infected and th
envelope about the mean formed by the indicated confide
intervals is very large relative to the mean.

We sought to delimit the extreme functional forms of t
final size of the epidemic asa varied. To this end we have
for parameters in the standard set, put the initial infect

FIG. 4. The dependence of the final sizePF ~dimensionless
quantity between 0 and 1! of the epidemic on the microscopic var
able r , whose units may be taken as (5 h)21.
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rate at 0.1 and used a population ofn5110 for specific initial
conditions defined as follows: Edge:N05$1,2,...,10%;
middle: N05$51,52,...,60%; and uniform: N0
5$6,17,28,...,94,105%. In Fig. 6~a! are shown the variations

FIG. 5. Final size is plotted against the parametera ~dimension-
less or per unit distance between individuals! for 50 different, ran-
domly generated initial configurations. The estimated mean
95% confidence intervals are shown.

FIG. 6. ~a!. Final sizePF ~dimensionless! plotted against the
parametera ~dimensionless or per unit distance between individ
als! for the three extreme cases of initial distribution described
the text.~b! Total duration of epidemic vsa.
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2168 57TUCKWELL, TOUBIANA, AND VIBERT
in final epidemic size,PF as a function ofa, for the three
‘‘extreme’’ initial configurations. When the initially infected
individuals are most dispersed~uniform case! the epidemic is
practically ‘‘all or none’’ with a sharp threshold at a critica
value of the mobilitya'0.75. A larger value ofvc1

gave
quite different results, indicative of the delicate interplay b
tween the dynamical properties of viral growth within a
individual on the one hand and the mobility of individuals
the population at large. If a disease is harder to estab
within an individual~higher viral threshold! then spread will
be negligible unless the population is extremely mobile~a
small!. Similarly, a virus that readily establishes itself with
individuals will pervade an entire population even if the i
dividuals in the population at large interact very litt
amongst themselves.

When the initially infected individuals occur in one regio
at theedge, the threshold effect with respect to variations
a is blunted or smoothed out, as can be seen in Fig. 6~a!.
There are now chances for partial epidemics~i.e., with PF
!1! for values ofa between 0.77 and 1.15. However, wh
a is significantly greater than the value at which the e
demic is total (PF51), the spread is very limited and th
epidemic is still practically an ‘‘all or none’’ phenomenon
In distinction to this, when the initially infected individual
are all in the central region, case ‘‘middle,’’ there is a mu
less well defined threshold effect asa varies. The final size
of the epidemic is practically independent of the mobili
for 1.6,a,1.8.

Duration of the epidemic

For the same configurations of initially infected individ
als as described in the preceding section, we have also fo
the duration of the epidemic, defined as the time inter
between the arrival of the first individuals infected and t
time after which there are no new cases of the disease. Fi
6~b! shows the duration versusa. For the dispersed initia
infected group if there is an epidemic it is fast and total. F
the clustered case ‘‘edge’’ there is a rapid rise in the dura
of the epidemic asa increases through the small values
this parameter where the final size isPF51. Thus there may
be a very rapid total epidemic or one that takes a very lo
time, but is still nevertheless of total penetration. Simi
effects, but to a lesser extent, occur for the other cluste
initial condition ‘‘middle.’’ We have also found that ther
are epidemics of the same duration which may be of ra
cally different sizes, even for the same initial condition.

DISCUSSION

The spread of disease involves the interplay of t
classes of important dynamical processes. One is the me
nism of transmission, which may be through direct soc
processes or via secondary agents such as in the ca
malaria. The other component is the evolution of the inv
ing bacteria or virus within individuals. Classical epidem
modeling has usually been concerned with the populat
dynamical and demographical processes. On the other h
there have been many recent studies of the dynamics of
growth within individuals, with special emphasis on HIV
We have attempted here to combine these two componen
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a single framework so that it is possible to examine the
fects of parameters at the microscopic level on the sprea
disease within a population. We have found that there
threshold effects in many parameters at both the microsc
level, such asr andl, and at the demographic level, such
a and b. It will be of interest to examine the effects o
vaccination on such threshold effects and such studies
be useful in the formulation of public health policy. Equal
important will be the analysis of stochastic effects when
rameters are near their threshold values to assess the
abilities of occurrence of noise-induced epidemics analog
to noise-induced activity in neurons and neural netwo
@11,12#. We will consider recurrent diseases, which may o
cur when the condition for an infinite period is relaxed, in
future article. We conclude by pointing out that more real
tic features of population dynamics can be included in ea
solved models such as the following in two space dim
sions.
(i) Discrete model with noise.Instead of employing only one position inde
in the discrete model used in the above numerical results it is useful to
the individuals at the points of a grid or lattice. Labeling the lattice poi
( i , j ), with i 51,2,...,m; j 51,2,...,n, we may put, using the simplest form fo
the intrinsic viral growth rate,

dai j

dt
5l i j 2m i j ai j 1e i j ai j v i j , ~8!

dv i j

dt
5r i j v i j 2g i j ai j v i j 1FF(

k1

m

(
k2

n

bk1k2 ,i j vk1k2G
1s i j

dWi j

dt
. ~9!

Here theWi j aremn independent standard Wiener process
and summation is over themn21 pointsÞ ( i , j ); thes i j are
measures of the noise amplitudes.

(ii) Continuous approximation.If the population density
is large one may turn to a continuous approximation in t
space dimensions. We leta(x,y,t) andv(x,y,t) be the anti-
body and virion densities in a two-dimensional region. Th
the two equations

]a

]t
5l2ma1eav, ~10!

]v
]t

5g~a,v !1FF E
x1

x2E
y1

y2
b~w,z,y,x!v~w,z,t !dwdzG

may be used to describe the evolution of the viral populat
in the chosen region. We plan to report on these and o
extensions of the basic model in future articles.

ACKNOWLEDGMENTS

We thank Dr. Fabrice Carrat and Emmanuelle LeCor
for illuminating discussions and useful references, and La
M. Richards for assistance with the presentation. H.C.T
grateful to Professor Alain-Jacques Valleron and INSER
for financial support.



.

-

-

o

d,

57 2169SPATIAL EPIDEMIC NETWORK MODELS WITH VIRAL . . .
@1# D. Hansel, G. Mato, and C. Meunier, Phys. Rev. E48, 3470
~1993!; R. Rodriguez and H. C. Tuckwell,ibid. 54, 5585
~1996!; L. Kruglyak and W. Bialek, Neural Comput.5, 21
~1993!; J. Deppisch, H.-U. Bauer, T. Schillen, P. Konig, X
Pawelzik, and T. Geisel, Network4, 243 ~1993!.

@2# N. T. J. Bailey,The Mathematical Theory of Infectious Dis
eases and Its Applications~Griffin, London, 1975!.

@3# R. M. Anderson and R. M. May,Infectious Diseases of Hu
mans~Oxford University Press, Oxford, 1991!.

@4# Epidemic Models, edited by D. Mollison~Cambridge Univer-
sity Press, Cambridge, 1995!; V. Capasso,Mathematical
Structures of Epidemic Systems~Springer, Berlin, 1993!.

@5# C. J. Rhodes and R. M. Anderson, Nature~London! 381, 600
~1996!; M. J. Keeling and B. T. Grenfell, Science275, 65
~1997!; C. J. Duncan, S. R. Duncan, and S. Scott, J. The
Biol. 183, 447 ~1996!.
r.

@6# M. Altmann, J. Math. Biol.33, 661 ~1995!.
@7# A. Johansen, J. Theor. Biol.178, 45 ~1996!.
@8# L. Toubiana and J-F. Vibert~unpublished!.
@9# M. A. Nowak and C. R. M. Bangham, Science272, 74 ~1996!;

A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonar
and D. D. Ho, Science271, 1582~1996!; A. N. Phillips, Sci-
ence271, 497 ~1996!.

@10# J. M. Coffin, AIDS10 ~suppl 3!, S75~1996!.
@11# H. C. Tuckwell and F. Y. M. Wan~unpublished!.
@12# H. C. Tuckwell and R. Rodriguez, J. Comput. Neurosci.5, 91

~1998!; J. Pham, K. Pakdaman, and J-F. Vibert, inComputa-
tion in Neural Systems, edited by J. Bower~Plenum, New
York, 1997!.

@13# G. A. Bocharov and A. A. Romanyukha, J. Theor. Biol.167,
323 ~1994!.


