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Enhancement of epidemic spread by noise and stochastic resonance
in spatial network models with viral dynamics
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We extend a previous dynamical viral network model to include stochastic effects. The dynamical equations
for the viral and immune effector densities within a host population of siaee bilinear, and the noise is
white, additive, and Gaussian. The individuals are connected witth>am transmission matrix, with terms
which decay exponentially with distance. In a single individual, for the range of noise parameters considered,
it is found that increasing the amplitude of the noise tends to decrease the maximum mean virion level, and
slightly accelerate its attainment. Two different spatial dynamical models are employed to ascertain the effects
of environmental stochasticity on viral spread. In the first model transmission is unrestricted and there is no
threshold within individuals. This model has the advantage that it can be analyzed using a Fokker-Planck
approach. The noise is found both to synchronize and uniformize the trajectories of the viral levels across the
population of infected individuals, and thus to promote the epidemic spread of the virus. Quantitative measures
of the speed of spread and overall amplitude of the epidemic are obtained as functions of the noise and
virulence parameters. The mean amplitude increases steadily without threshold effects for a fixed value of the
virulence as the noise amplitudeis increased, and there is no evidence of a stochastic resonance. However,
the speed of transmission, both with respect to its mean and variance, undergoes rapid increabesngss
by relatively small amounts. In the second, more realistic, model, there is a threshold for infection and an upper
limit to the transmission rate. There may be no spread of infection at all in the absence of noise. With
increasing noise level and a low threshold, the mean maximum virion level grows quickly and shows a
broad-based stochastic resonance effect. When the threshold within individuals is increased, the mean popu-
lation virion level increases only slowly as increases, until a critical value is reached at which the mean
infection level suddenly increases. Similar results are obtained when the parameters of the model are also
randomized across the population. We conclude with a discussion and a description of a diffusion approxima-
tion for a model in which stochasticity arises through random contacts rather than fluctuation in ambient virion
levels.

PACS numbe(s): 87.10+e, 05.40-a, 02.50-r

INTRODUCTION noise even of a small amplitude serves to accelerate the
spread of the virus and to synchronize the development of
There have been many recent studies of coupled nonlinealisease across the population. In Héf.heterogeneous spa-
dynamical systems in the absence or presence of additive ¢ial effects were taken into account in deterministic and sto-
multiplicative noise[1]. In a recent communicatiof2] we  chasticS, E, I, andR frameworks. In contrast, our approach
considered a mathematical model for the spread of viral ininvolves dynamical variables at the microscopic level, and
fection within human or other populations in which both the complements approaches in which disease is considered to
dynamics of viral(or bacterial growth within individuals  percolate through a social network as in Ré&fl. However,
and the interactions between individuals are taken into acthe advantage of our approach is that one can study the
count. We thus bridged the classical macroscopic approacpread of a virus at the population level in such a way that
as typified byS I, and R models[3], to the growth and viruses with different growth patterns within individuals may
population dynamics of disease at the microscopic level. Albe distinguished.
though in that work we incorporated the stochastic nature of
the transmission process, expectations were used in interpre-
tations of the transmission matrix, and this resulted in a de-
terministic system which was integrated numerically. Of in-
terest were the results obtained on threshold effects in the It is known|[6,7] that the immune reaction to viral infec-
parameters describing microscopic viral growth and microtion entails a complex set of reactions involving specific and
scopic antibody production. nonspecific responses. In the case of the influghgzaus, a
In the present study we examine truly stochastic effect&omplete study of the dynamical system requires a system of
on the dynamical process of viral growth and the transmisten differential equation$8]. A simplified but useful ap-
sion of virions among population members. We will see thatproach in the mathematical modeling of these phenomena is
to suppose that there are only two dynamical variables re-
quired to describe the state of the system of intef24].
* Author to whom correspondence should be addressed. Electronithus we let each memberf a population ofn individuals
address: tuckwell@b3e.jussieu.fr be represented by a vector function of time whose compo-
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nents are effector numbefs(t) and the virion leveV;(t). where ;=0 if i#]j and ;=1 if i=]j. This incorporates a
The term “effector” is used to incorporate the gamut of hosttruly spatial effect, and represents an averaging of the effects
defense particles, which may include antibod@s that lead  of various members of the community on each other, as the
directly or indirectly to the destruction of virus particles. distances between them fluctuate. Although in general the
These quantities evolve according ta 2lifferential equa- nonstochastic source terms for virus production in ittke
tions which are coupled via a transmission matBxwith  individual are all bounded for any finite, we will find so-
elementsg;; ,i,j=1,...n, such thatg;;V; is the expected lutions for relatively small population sizes and assukpe
rate of transmission of infectious particles from individiual =cc for all i. The viral dynamical equations are now
to individualj.

dvi S —ali-j|
Network equations ar rVi— %AV +18J.21 Vi(1-4j)e Toiw;.
The equation describing the evolution of the effector 4

population within theith individual is In the numerical work described below we have, in the first

dA; instance, made the dynamical parameters the same for all
EZM—MiAi‘FGiAiVi- 1) members of the population with the following values;
= 05, Mi= 005, r= 1, Yi= 01, €= 001, andki =, The
In Ref. [2] we made the capturing of virions by any indi- Neétwork parameters were set #=0.1 and «;=0.75.
vidual depend upon a nonlinear function of the total numbefchanges in the values of ando; are considered below and
of virions transmitted to that individual by all the other mem- We Will, in the second modekee below allow the dynami-
have
FOKKER-PLANCK APPROACH

+ oW . As the system of @ stochastic differential equations de-
5 fined by Egs.(1) and(4) is in fact a Zh-component tempo-
2 rally homogeneous Markov process, we may define a transi-

The parameters have the following meanings for individuai©o" probability density function
i: \; is the rate of production and/or transport of effectors,
;i is the deathclearancgrate of effectorsg; is the rate of
production of effectors in response to a unit viral population
r; is the intrinsic growth ratémeasure of “virulence” and
referred to as the virulence parametef the viral popula-
tion, k; is the saturation value of the viral population, and op n

is the clearance rate of virus particles. We have inserted an — = — —
additive white noise term, with variance parametet, in at k=1 98

dv, V,
H:rivi 1- k_l - ’)/|A|V|+F

> BiiV
j#I

0 50 0.0_.0 0
p(a1,8,...,80,01,02,---,0n,t|@7,83,...,87, 071,05, ---,0p),

wherea? andv} are initial values, which satisfies a Fokker-
Planck or forward Kolmogorov equation

(A= @i+ €@ pl

each viral equation as a first approximation to a study of oy

stochastic effects. The latter may result from random varia- = —[[rvk— vt Bf(v1,02,...00)1p]
tions in the processes of viral growth within individuals, or =1d

random environmental effects. Herew;=dW,/dt,i n )

=1,2,... arewhite noises{W,} being assumed to ba n 1 E Uzﬂ (5)
independent standard Wiener processes. The funétias 2L K vﬁ

usually, as in our previous deterministic study, nonlinear and

saturating to represent an upper limit to the rate at whictHere we have defined

virus particles can be absorbed by any individual. Here we .

will consider two possibilities foF. In the first model of the _ —ali—]]

effects of noise, we will assume that the capture process is f(V)_BJZl vj(l=dj)e .

purely linear and additive; the justification for this approach

is that the populations under consideration are of small sizegithough the partial differential equatid®) can in principle

so that, especially because the number of transmitted page solved numerically, it is expeditious to proceed by direct

ticles is multiplied by an exponentially decreasing functionsimulation of the stochastic integrals of E¢b. and(4)—see
of the distance between individuals, and saturation and norpelow.

linear effects are not expected to be important. This approach
also has the advantage of not requiring a specially con-

. . . L : One individual
structed functiorF which carries with it a certain degree of

arbitrariness. In the model to be developed beluvis as- Because we are adding noise to the entire system of con-

sumed to be a step function. nected hosts, it is of interest to attempt to distinguish the
We will consider the case of transmission which declineseffects of noise upon a single individual from those which

exponentially with distance, whereupon arise through network phenomena; that is, by means of con-

o tact with all the other individuals in the population. Thus for
Bij=B(1— ;e -l (3)  one individual we set
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dA 20
rTe N—uA+ €AV, (6)
By § ]
A o -
a—l’ — v +0‘W’ (7) >E70-
whereW is a standard Wiener process. For this system the E60 1
transition probability density functiop(a,v,t|ag,v,) de- 5
fined through 1
p(alv!tlaOlvO)dadv 40 * v T ' '
0 0.1 0.2 0.3 04 05 0.6
=PHA(t) e[a,a+da),V(t) e[v,v+dv)|A(0) (@)
=a,,V(0)=v)}, " .
satisfies the forward Kolmogorov or Fokker-Planck equation ]
w_ D J ; 1
E__ﬁ[( —pa eav)p]—g[(rv—yav)p] 3 n]
o? o"2p ® E 60 1
+ = .
2 v 50
Solution of this equation, which is also not difficult using @

numerical methods, with appropriate boundary and initial 0 01 02 03 04 0s 06
conditions gives the joint probability density of the effector ®) s
and virion densities, and thus enables one to determine quan-

- . . . . . FIG. 1. lllustrating the effects of i i th
tities such as their moments at tirhéor a given starting pair G (@ lllustrating the effects of increased noise on the

response in a single individual. The maximum mean virion level is
(80,v0)- plotted against increasing values of the noise paranaet€he error
bars, which are not exact confidence intervals, are explained in the
NUMERICAL SOLUTIONS text. Here there is one equilibrium point @t0,0 which is an as-
ymptotically stable node. The parameter values are0.5

We have integrated the pair of coupled stochastic differ—eﬁectors,day,u:0_05 days?,r=1days?, y=0.1 days? effec-

ential equation$6) and(7) using a strong Euler method. We qrs-1 ¢=0.01 days? virions %, andk=2 virions. Here and in
have done this for the same values)ofu, € r, andy as 4| subsequent figures the units of viral load may be taken as those
above, and with the various values®fvhich are to be used appropriate for certain influenza viruses, namely:!per ml of in-

in the network equations. Without noise there are in generdected tisue [8]. The units for o throughout are virions
two equilibrium points for this systerR;=(\/u,0) andP,  mi~ttime Y2 (b) As in (a) except withu=0.10. There are now
=[r/y,(ur—Nvy)ler]. For the above choice of parameters two equilibria, one of which af10,5 is an asymptotically stable
there is only one equilibrium point &;=P,=(10,0), and spiral point, the other being an unstable saddle point at zero virions.
this is an asymptotically stable node. The initial virion level

was set alv(0)=0.5 with probability 1. The results of this point (5,0) is an unstable saddle, ati0,5 is an asymptoti-
integration are shown in Fig(d), and are somewhat surpris- cally stable spiral point. Thus the virus cannot be extin-
ing. In this figure the values of the maximum mean virionguished as the death rate of effectors is lowered. For this
level (20 trial9 are plotted against the noise parameter different configuration, with an extra critical point away
The error bars in this figure are not indicative of true 95%from V=0, we again find that the maximum of the mean
confidence intervals, but representl.96 times the maxi- virion level tends downward as the noise level is increased
mum standard deviation of the virion level. It is seen that theand the speed at which the maximum is attained is slightly
deterministic maximum virion level is 79.63, but that the increased.

maximum decreases as the noise increases. The extent of the

error bars increases from 0 in the d_eterministi(_: case to 24.16 NETWORK RESPONSE WITH NOISE

when 0=0.5. We also noted the time at which the mean

virion level achieved its maximum level. This declined from  With the same values of the parameters as above, the
6.72 days in the deterministic case to 6.4 days when system of stochastic differential equatiofld and (4) was
=0.4. Thus the maximum is attained more somewhat rapidlyjumerically solved using a strong Euler metH&d. It was

in the presence of noise, but it has a smaller magnitude. Thassumed that there was initially one infected individual at the
question arises as to whether this phenomenon is due to tleenter of a population oh=31 individuals, resulting in a
particular choice of parameters which make the criticalsystem of 62 coupled stochastic differential equations. Each
points coincide. To examine this, we numerically solved thendividual, infected or not, had an initial effector density
stochastic equations with the same parameters as before, lgunt of zero, and again the initial value of virion density in
with = 0.1, and the corresponding results are shown in Figthe first individual to be infected was set at 0.5. The param-
1(b). With this new value ofu there are two equilibria: the eterso; were all changed from zer@ deterministic case as
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FIG. 2. Showing the effects of increasing noise level on the spread of virus across the population. In the top part of the figure are shown
the results in the deterministic case=£0). In the middle records, a small amount of noise 0.005 speeds up the spread of virions and
causes a slight increase in the average amplitude. In the lowest record, with a much larger vai@Sfthe spread across the population
is greatly increased and the maximum virion level attained in individuals is uniform.

in Ref. [2]) to 0.05 to examine the effects of noise on thecreases. This can be seen in the top part of Fig. 2, where the
spread of the epidemic through the population. Note thavirion level is plotted against time witkr; = 0—for one half
because there is no artificially imposed threshold, the entiref the population. The individual responses are well distin-
population is infected to some extent even in the absence afuished. In the initially infected individual the peak viral
noise. However, the parameter values given above, in thdensity reaches a maximum value more than double that at-
absence of noise, are such that the infection invades thtained in the individuals furthest from the source. Further-
whole population in the absence of noise, but the individuamore, the time interval between the occurrences of the peak
response, as measured by the peak viral load, becomegal loads in the initially infected individual and in the last
smaller as distance from the initially infected individual in- infected is about ten days. The fact that in the absence of
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FIG. 3. For three values of the virulence parametere show the variation in measures of the network response as the noise parameter
o increases. From top to bottom are shown the mean value of the amplt{isiee Eq(9)], the standard deviation of this quantity, and the
mean and standard deviation of the spaeas defined in Eq(10). Units forr may be taken as (9§~ *.
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FIG. 4. Here we show the spatiotemporal development of the epidemic wave for the standard parameter values as given in the text.

noise individuals more remote from the initially infected one compute, as a function of the noise parameters, the mean and

attain smaller virion levels is considered to be a deficiency irstandard deviation, across trials, of the amplitulef the

this first simpler unrestricted model. response. Let the maximum virion level in individudde the
When the noise is switched on at a low level, with  random variable/ ., . Then we put

=0.005, the spread of infection throughout the population is

more rapid and the responses are more uniform. The corre-

sponding time courses of viral loads are shown in the middle A=

part of Fig. 2. Thus a small amount of stochasticity in the

background virion levels leads to an enhancement in both the

amplitudes of the individual responses and in the alacrityAlso, we compute the mean and standard deviation of the

with which the infection propagates throughout the nonin-speedV of spread. The latter is here pragmatically defined as

fected parts of the population. When the noise parameters afellows. Let T, be the time at which the virion level at-

increased too;=0.5, the enhancement is much greater, agains its maximum value in thigh individual. Then lefT .

can be seen in the bottom part of Fig. 2. Here the amplitudebe the largest of th& ., and letT,,, be the smallest of

of the individual responses differ little among themselvesthese same random variables. The speed is

and the speed with which the maximum virion level propa-

gates is greatly augmented. It can be seen that the spread 1

across the population is almost immediate. It is also notewor- V=r—5 (10

thy that the acceleration and increase in the response occurs me - min

despite the fact that the noise terms are additive and hayg, Fig. 3 we show the variation inl and) as the noise level

Zero mean. . . increased fron=0 to 0.05 for the three values of the viral
These phenomena are reflected in the time courses of thﬁtrinsic growth parameter=0.5, 0.75, and 1.0. It can be
Tean virion Ievgls(not show. When_there Is no noisex{  geen from the plot of mean amplitude that increasimgs a
=0) the mean rises slowly to a maximum level of about 25. 43 maic effect, which was already noted as a threshold phe-
With a small amount of noiseo=0.005) the mean virion qmenon in Ref[2]. In fact one can also observe that the
level rises more rapidly to attain a higher peak. With greatly e of change of the mean amplitude with increasing noise is
increased noiseo;=0.5) a truly epidemic phenomenon oc- yg|aiively small for all values of investigated. There is also
curs, as the mean virion level reaches a very large peak valug gentie increase in the standard deviation4ofHowever,
in a very short time and subsides equally rapidly. One thugne relative increases in the means are greater than the cor-
observes, in this simple model, two phenomena in relation Qegnonding increases in the standard deviations, so that the
the effects of noise on the spread of disease through a virgheficient of variation of the maximal virion level must de-
dynamical network that are seen in neural networks, namely, e age agr, increases. Thus the response across the popula-
an enhancement and a synchronization of the individual regon pecomes more uniform. The effects of increased noise

SPONSes. on the speed of spread are more pronouncedr Fdr (the
standard valug increasing the noise parameter from 0 to 0.5
results in a nearly threefold increase in the speed of spread

In order to more accurately quantify the effects of noiseand an extremely large concomitant increase in the standard
on the spread of virions throughout the host population, weleviation of the spread. Further increasesrinesulted in a

S|

izl Vmax,i . (9)

AMPLITUDE AND SPEED
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FIG. 5. (a) The virion levels are shown as functions of time for each member of the population of 31 individuals when only the middle
individual is initially infected. In all three records;=0.5. The upper set of results is for the unrestricted model, the middle set is for the
second mode(with threshold with the same parameters, and the third set is for that same model with randomized pardinetdrs.
maximum virion levels attained within the individuals in the three cases depicted itigpart

continued growth in the overall amplitude of the responsdramework, it has two major shortcomings. First, there is no
with no evidence of a stochastic resonaft@| effect. Simi-  threshold for the growth of a viral population within an in-
lar results were found for the less virulent cases).75 and  dividual. Thus any contact with an infected individual leads
r=0.5. InFig. 4 we show the profiles of the virion levels immediately to a new infection. Second, there is theoretically
across the population. In the top part, there is no noise ( no upper limit to the rate at which virions can be transmitted
=0), and the wavelike spread of the virus from the centrakto an individual from all other infected individuals, regard-
initially infected individual throughout the population is dis- less of the virion population already present. We have there-
cernible. In the lower part of Fig. 4 the results are shown forfore considered a second stochastic dynamical network
0=0.5, at the time$=4, 5.5, and 7. The progressive wave model which has both a threshold and an upper limit for the
is replaced by a stochastic and relatively haphazard growttate of transmission of virions to any individual. The effector
pattern. equations(1) are assumed to be unaltered but the virion
equations are changed as follows. Define

MODEL WITH THRESHOLD

Although the model employed above has the advantages

n
. L . . Ti:BE Vj(l—ﬁij)efa“fj‘—kaiwi . (11)
of simplicity and having a straightforward Fokker-Planck i=1
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Then 100 ‘ ‘ P —
/ |
90- 4 |
dVi . med spread W‘
gt = Vi YAV H(Ti— 0 st MINCT L T ma), ol T 7‘
12 g /
8 T
wherev; s 0 is the threshold level of rate of viral trans- £ / /m@d :
mission required to make a successful colonization in the Eso- :
host, andT; ., is the maximal rate at which virions may be £ .. /
transmitted into theth host. HereH(-) is a unit step func- § High threshld-rar.com parameters |
tion at the origin. =800 1
Equations(1) and(12) were also integrated numerically, 20b | High threshold
and the noise parameter varied as for the above unrestrictec 1/ |
model. A comparison of results for the two models is shown 7 —
in Figs. 5a) and 5b). In Fig. 5a we show three- ol \ e ‘ \ s ‘ \ j
. . .. . . . 0 0.05 0 0.13 02 0.25 0.3 0.35 0.4 0.45 0.5
dimensional plots of virion levels against time in all the (a) Noise parameter
members of the population, all for a noise levelof0.5.
The top set of results is for the first model with standard ' ‘ ‘
parametersas abovg in the middle part are the results for 85
the threshold model with the same set of parameters; and the » Low threshold
third set of results are for the second model with randomized 60
parameters. Here the five parameteysr;, v, wi, ande; 5
were drawn randomly from normal distributions with mean 1_355
values as in the deterministic case, and with standard devia- £ 5
tions equal to one-tenth of the mean value. In Figp) &re >
shown the maximum virion levels across the population for §45
the three corresponding cases of Figp)5 2
In Fig. 6(a) we show the mean values of the maximum 40r ]
virion levels (MMVL'’s ) attained in the various individuals

plotted against the noise parameterFor the unrestricted 356 ' ' ‘ ‘ J ' ‘ ‘ ‘
(first) model, discussed partly above, the MMVL is large ' ' ‘ ' ‘ ' ‘
even in the absence of noise. Increasing the value fobm

0 to 0.3 makes the MMVL increase, in a linear fashion, to
approximately 1.7 times its value without noise. After
=0.3, the MMVL continues to increase with the noise am-
plitude at all values up to-=10, and there is no evidence of
stochastic resonance in this model. In contrast, for the chosen
values of the parameters, with a low thresholg esn
=0.01), there is no spread of disease at all either without
noise or with very low levels of noise, it being emphasized
that the noise added has zero mean. A rapid increase occur:
in the MMVL as o increases, until about the value
=0.25, whereupon the MMVL attains a maximum. The de-
tail of this maximum is shown in Fig.(6). Thus a broad
based stochastic resonance effect does occur, presumably it 3 1 ‘ ' ‘ '
keeping with the nonlinearities induced by the threshold and 05 L 1'5 2 25 3
maximal transmission rate. For the higher threshold case in- (b) Noisg parameter

vestigated, withv; yes=0.1, there is no spread of virus

throughout the population until considerable noise is present

(again with zero meanwith an apparent threshold of about

0=0.2. With greater values of the noise amplitude, the g ¢ (a) Comparison of results for the unrestricted model
MMVL rises quite sharply, but reaches a maximum at abouteqs (1) and (4)] with those of the model with a threshold and a
o= 1.25 after which it again declines significantly as detailedmaximum transition rat¢Egs. (1) and (12)]. Mean values of the

in the lower part of Fig. @). Thus there is again a broad- maximum virion levels are plotted against the noise parameter
based stochastic resonance. A similar behavior was observage uppermost curve is for the first model, whereas all other curves
when, as indicated in the figure, the five parameters wer@re for the second model. For the curve marked threshold
chosen randomly as described above. Standard deviations @fy,.q=0.01 for alli’s. For the remaining curves; y,es=0.1 for

the maximum virion level§SMVL's), were also obtained for all i's and in one case, as indicated, the parameters are randomized
the unrestricted model or the three cases of the second modadross the populatiorib) Detail of the maxima in the mean maxi-
mentioned above. In the first model, the SMVL decreasednum virion levels for the model with a threshold for the cases of
rapidly at first aso increased, reflecting the uniformization low and high thresholds. For explanations, see text.

High threshold

Max viral density




5618 TUCKWELL, TOUBIANA, AND VIBERT PRE 61

of the response amplitude already noted above. For values td make the amplitude of the response individuals more uni-
the noise parameter greater than about 0.5, the SMVL inform across the population. No stochastic resonance was ob-
creased, probably because the deterministic component wasrved in this unrestricted transmission model. We also con-
masked by the noise. In the second model, with a low threshsidered a more realistic but less tractable model in which
old, the SMVL grew quickly witho, but remained very there is a threshold rate required to instigate a new viral
small, never exceeding a value of 4.6 frof the mean. In infection and a maximum rate of transmission to any indi-
the high threshold case, the SMVL remained very smallyvidual from other host. Here the effect of noise was more
attaining a maximum value of about 10% of the mean wherdramatic, as it could give rise to an epidemic under circum-
o=0.4. With randomized parameters the SMVL is, as ex-stances where there was no spread of infection in the absence
pected, much greater, being as large as 33% of the meaaf noise. Furthermore, a broad-based stochastic resonance
Thus one sees that, in the second model, the noise is moweas found in this model. There are many factors which we
crucial for spreading the disease but that the variation irdid not have the space to discuss, such as the effects of
individual responses is, for nonrandom parameters, smallarious geometrical patterns of initial infection—see Ref.
The variability in responses is only significant if the five [2], where we reported some details of this aspect for a de-
parameters themselves are drawn from probability distributerministic model with threshold.
tions. We remark that noise or stochastic efects may be intro-
duced into a viral epidemic dynamical spatial network in
DISCUSSION AND CONCLUSIONS several ways. For example, apart from the additive noise
. ) o considered in this paper the transmission coefficients can be
The spread of disease by virus or bacteria in human anghade into random processes. This can be achieved by mak-

other populations involves two main components, both ofing the number of encounters between individuahd indi-
which must be included in a mathematical treatment. Firstyjqual j a Poisson procesd\;;, with rate parameteh;,

the dynamical processes which describe the within-host g-ali-il | the absence of threshold or limiting effects,
growth of the population of invading, disease-causing parthe equations for the viral dynamics then become

ticles (e.g., virions. This is necessary because each disease

has its particular temporal pattern of development, a factor av. n dN-.

which has been ignored in classi¢&lIR or SEIR models. d—t'zrivi—yiAiViJrﬁz Vj(1—5ij)d—t”, (13)
Second, a plausible model must contain a description of the =1

dynamics of spread from infected to uninfected individuals.
In our previous communicatiof2] we endeavored to intro-
duce models with these two components by employing

or there may be additive noise as well. An interesting diffu-
sion approximation is obtained for E(L3), namely,

dynamical systems approach to both the within-host devel- v n

opment of a viral population and the transmission of virions OV — AV + Vil 8\

from infected to uninfected hosts. Whereas previously we dr ViT YA Bgl i€ Ny
considered only deterministic effects, here we have ad- .

dressed the inclusion of stochastic effects by the addition of ) , AW,

white Gaussian noise to the dynamical equation satisfied by th le Vi(A= 3\ dt - (14

the virion numbers for each individual. Although there are

many possibilities for the way in which noise is introduced, A threshold may be introduced as above, but a more conve-
we chose the simplest as a useful starting point which gavgjent way to do this is to introduce a cubic nonlinearity as in
the first model. The effects of noise on the growth of a viralgef [2]

population in an isolated individual were studied first, and

led to the surprising result that the mean virion level was : V. n

depressed as the amplitude of the noise increased. In many —'=rivi( 1- —')(Vi— 0)+ B, Vi(1— &)\
cases nhoise acts to increase the mean of a dynamical dt Ki =1
variable—for example, it increases the firing rate in neurons o
with subthreshold voltage modeled by an Ornstein- \/ 201_ s
Uhlenbeck procesfll]. However, the effect of noise varies " 121 Vitd= o
depending on the mathematical properties of the sy§ien

When noise was added to the viral epidemic network as invhere 6 is a threshold viral density. The use of E{.5)

Egs. (1) and (4) above, its most noticeable effect was to makes clear the analogy between neural and epidemic net-
accelerate the spread of the disease across the population amdrk models. We will pursue this aspect in future papers.

2 AW,

i gt (15
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