
e

PHYSICAL REVIEW E MAY 2000VOLUME 61, NUMBER 5
Enhancement of epidemic spread by noise and stochastic resonance
in spatial network models with viral dynamics

Henry C. Tuckwell,* Laurent Toubiana, and Jean-Francois Vibert
Epidémiologie et Sciences de l’Information, University of Paris–VI, INSERM U444, 27 rue Chaligny, 75571 Paris 12 Cedex, Franc

~Received 11 August 1999!

We extend a previous dynamical viral network model to include stochastic effects. The dynamical equations
for the viral and immune effector densities within a host population of sizen are bilinear, and the noise is
white, additive, and Gaussian. The individuals are connected with ann3n transmission matrix, with terms
which decay exponentially with distance. In a single individual, for the range of noise parameters considered,
it is found that increasing the amplitude of the noise tends to decrease the maximum mean virion level, and
slightly accelerate its attainment. Two different spatial dynamical models are employed to ascertain the effects
of environmental stochasticity on viral spread. In the first model transmission is unrestricted and there is no
threshold within individuals. This model has the advantage that it can be analyzed using a Fokker-Planck
approach. The noise is found both to synchronize and uniformize the trajectories of the viral levels across the
population of infected individuals, and thus to promote the epidemic spread of the virus. Quantitative measures
of the speed of spread and overall amplitude of the epidemic are obtained as functions of the noise and
virulence parameters. The mean amplitude increases steadily without threshold effects for a fixed value of the
virulence as the noise amplitudes is increased, and there is no evidence of a stochastic resonance. However,
the speed of transmission, both with respect to its mean and variance, undergoes rapid increases ass changes
by relatively small amounts. In the second, more realistic, model, there is a threshold for infection and an upper
limit to the transmission rate. There may be no spread of infection at all in the absence of noise. With
increasing noise level and a low threshold, the mean maximum virion level grows quickly and shows a
broad-based stochastic resonance effect. When the threshold within individuals is increased, the mean popu-
lation virion level increases only slowly ass increases, until a critical value is reached at which the mean
infection level suddenly increases. Similar results are obtained when the parameters of the model are also
randomized across the population. We conclude with a discussion and a description of a diffusion approxima-
tion for a model in which stochasticity arises through random contacts rather than fluctuation in ambient virion
levels.

PACS number~s!: 87.10.1e, 05.40.2a, 02.50.2r
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INTRODUCTION

There have been many recent studies of coupled nonli
dynamical systems in the absence or presence of additiv
multiplicative noise@1#. In a recent communication@2# we
considered a mathematical model for the spread of viral
fection within human or other populations in which both t
dynamics of viral~or bacterial! growth within individuals
and the interactions between individuals are taken into
count. We thus bridged the classical macroscopic appro
as typified byS, I, and R models @3#, to the growth and
population dynamics of disease at the microscopic level.
though in that work we incorporated the stochastic nature
the transmission process, expectations were used in inte
tations of the transmission matrix, and this resulted in a
terministic system which was integrated numerically. Of
terest were the results obtained on threshold effects in
parameters describing microscopic viral growth and mic
scopic antibody production.

In the present study we examine truly stochastic effe
on the dynamical process of viral growth and the transm
sion of virions among population members. We will see t
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noise even of a small amplitude serves to accelerate
spread of the virus and to synchronize the developmen
disease across the population. In Ref.@4# heterogeneous spa
tial effects were taken into account in deterministic and s
chasticS, E, I, andR frameworks. In contrast, our approac
involves dynamical variables at the microscopic level, a
complements approaches in which disease is considere
percolate through a social network as in Ref.@5#. However,
the advantage of our approach is that one can study
spread of a virus at the population level in such a way t
viruses with different growth patterns within individuals ma
be distinguished.

STOCHASTIC MODEL WITH UNRESTRICTED
TRANSMISSION

It is known @6,7# that the immune reaction to viral infec
tion entails a complex set of reactions involving specific a
nonspecific responses. In the case of the influenza-A virus, a
complete study of the dynamical system requires a system
ten differential equations@8#. A simplified but useful ap-
proach in the mathematical modeling of these phenomen
to suppose that there are only two dynamical variables
quired to describe the state of the system of interest@2,6#.
Thus we let each memberi of a population ofn individuals
be represented by a vector function of time whose com
ic
5611 ©2000 The American Physical Society
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5612 PRE 61TUCKWELL, TOUBIANA, AND VIBERT
nents are effector numbersAi(t) and the virion levelVi(t).
The term ‘‘effector’’ is used to incorporate the gamut of ho
defense particles, which may include antibodies@6#, that lead
directly or indirectly to the destruction of virus particle
These quantities evolve according to 2n differential equa-
tions which are coupled via a transmission matrixB with
elementsb i j ,i , j 51, . . . ,n, such thatb i j Vi is the expected
rate of transmission of infectious particles from individuai
to individual j.

Network equations

The equation describing the evolution of the effec
population within thei th individual is

dAi

dt
5l i2m iAi1e iAiVi . ~1!

In Ref. @2# we made the capturing of virions by any ind
vidual depend upon a nonlinear function of the total num
of virions transmitted to that individual by all the other mem
bers of the population. Adopting the same approach here
have

dVi

dt
5r iVi S 12

Vi

ki
D2g iAiVi1FF(

j Þ i
b j i Vj G1s iwi .

~2!

The parameters have the following meanings for individ
i : l i is the rate of production and/or transport of effecto
m i is the death~clearance! rate of effectors,e i is the rate of
production of effectors in response to a unit viral populatio
r i is the intrinsic growth rate~measure of ‘‘virulence’’ and
referred to as the virulence parameter! of the viral popula-
tion, ki is the saturation value of the viral population, andg i
is the clearance rate of virus particles. We have inserted
additive white noise term, with variance parameters i

2, in
each viral equation as a first approximation to a study
stochastic effects. The latter may result from random va
tions in the processes of viral growth within individuals,
random environmental effects. Herewi5dWi /dt,i
51,2, . . . arewhite noises,$Wi% being assumed to ben
independent standard Wiener processes. The functionF is
usually, as in our previous deterministic study, nonlinear a
saturating to represent an upper limit to the rate at wh
virus particles can be absorbed by any individual. Here
will consider two possibilities forF. In the first model of the
effects of noise, we will assume that the capture proces
purely linear and additive; the justification for this approa
is that the populations under consideration are of small s
so that, especially because the number of transmitted
ticles is multiplied by an exponentially decreasing functi
of the distance between individuals, and saturation and n
linear effects are not expected to be important. This appro
also has the advantage of not requiring a specially c
structed functionF which carries with it a certain degree o
arbitrariness. In the model to be developed below,F is as-
sumed to be a step function.

We will consider the case of transmission which declin
exponentially with distance, whereupon

b i j 5b~12d i j !e
2au i 2 j u, ~3!
t
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whered i j 50 if iÞ j andd i j 51 if i 5 j . This incorporates a
truly spatial effect, and represents an averaging of the eff
of various members of the community on each other, as
distances between them fluctuate. Although in general
nonstochastic source terms for virus production in thei th
individual are all bounded for any finiten, we will find so-
lutions for relatively small population sizes and assumeki
5` for all i. The viral dynamical equations are now

dVi

dt
5r iVi2g iAiVi1b(

j 51

n

Vj~12d i j !e
2au i 2 j u1s iwi .

~4!

In the numerical work described below we have, in the fi
instance, made the dynamical parameters the same fo
members of the population with the following values:l i
50.5, m i50.05, r i51, g i50.1, e i50.01, andki5`. The
network parameters were set atb50.1 and a i50.75.
Changes in the values ofr i ands i are considered below an
we will, in the second model~see below!, allow the dynami-
cal parameters to be drawn from probability distributions

FOKKER-PLANCK APPROACH

As the system of 2n stochastic differential equations de
fined by Eqs.~1! and ~4! is in fact a 2n-component tempo-
rally homogeneous Markov process, we may define a tra
tion probability density function

p~a1 ,a2 ,...,an ,v1 ,v2 ,...,vn ,tua1
0,a2

0,...,an
0,v1

0,v2
0,...,vn

0!,

whereak
0 andvk

0 are initial values, which satisfies a Fokke
Planck or forward Kolmogorov equation

]p

]t
52 (

k51

n
]

]ak
@~lk2mkak1ekakvk!p#

2 (
k51

n
]

]vk
@@r kvk2gkakvk1b f ~v1 ,v2 ,...,vn!#p#

1
1

2 (
k51

n

sk
2 ]2p

]vk
2 . ~5!

Here we have defined

f ~v!5b(
j 51

n

v j~12d i j !e
2au i 2 j u.

Although the partial differential equation~5! can in principle
be solved numerically, it is expeditious to proceed by dir
simulation of the stochastic integrals of Eqs.~1! and~4!—see
below.

One individual

Because we are adding noise to the entire system of c
nected hosts, it is of interest to attempt to distinguish
effects of noise upon a single individual from those whi
arise through network phenomena; that is, by means of c
tact with all the other individuals in the population. Thus f
one individual we set
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dA

dt
5l2mA1eAV, ~6!

dV

dt
5rV2gAV1s

dW

dt
, ~7!

whereW is a standard Wiener process. For this system
transition probability density functionp(a,v,tua0 ,v0) de-
fined through

p~a,v,tua0 ,v0!da dv

5Pr$A~ t !P@a,a1da!,V~ t !P@v,v1dv !uA~0!

5a0 ,V~0!5v0!%,

satisfies the forward Kolmogorov or Fokker-Planck equat

]p

]t
52

]

]a
@~l2ma1eav !p#2

]

]v
@~rv2gav !p#

1
s2

2

]2p

]v2 . ~8!

Solution of this equation, which is also not difficult usin
numerical methods, with appropriate boundary and ini
conditions gives the joint probability density of the effect
and virion densities, and thus enables one to determine q
tities such as their moments at timet for a given starting pair
(a0,v0).

NUMERICAL SOLUTIONS

We have integrated the pair of coupled stochastic diff
ential equations~6! and~7! using a strong Euler method. W
have done this for the same values ofl, m, e, r, and g as
above, and with the various values ofs which are to be used
in the network equations. Without noise there are in gen
two equilibrium points for this systemP15(l/m,0) andP2
5@r /g,(mr 2lg)/er #. For the above choice of paramete
there is only one equilibrium point atP15P25(10,0), and
this is an asymptotically stable node. The initial virion lev
was set atV(0)50.5 with probability 1. The results of thi
integration are shown in Fig. 1~a!, and are somewhat surpris
ing. In this figure the values of the maximum mean viri
level ~20 trials! are plotted against the noise parameters.
The error bars in this figure are not indicative of true 95
confidence intervals, but represent61.96 times the maxi-
mum standard deviation of the virion level. It is seen that
deterministic maximum virion level is 79.63, but that th
maximum decreases as the noise increases. The extent o
error bars increases from 0 in the deterministic case to 24
when s50.5. We also noted the time at which the me
virion level achieved its maximum level. This declined fro
6.72 days in the deterministic case to 6.4 days whens
50.4. Thus the maximum is attained more somewhat rap
in the presence of noise, but it has a smaller magnitude.
question arises as to whether this phenomenon is due to
particular choice of parameters which make the criti
points coincide. To examine this, we numerically solved
stochastic equations with the same parameters as before
with m50.1, and the corresponding results are shown in F
1~b!. With this new value ofm there are two equilibria: the
e
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point ~5,0! is an unstable saddle, and~10,5! is an asymptoti-
cally stable spiral point. Thus the virus cannot be ext
guished as the death rate of effectors is lowered. For
different configuration, with an extra critical point awa
from V50, we again find that the maximum of the mea
virion level tends downward as the noise level is increa
and the speed at which the maximum is attained is sligh
increased.

NETWORK RESPONSE WITH NOISE

With the same values of the parameters as above,
system of stochastic differential equations~1! and ~4! was
numerically solved using a strong Euler method@9#. It was
assumed that there was initially one infected individual at
center of a population ofn531 individuals, resulting in a
system of 62 coupled stochastic differential equations. E
individual, infected or not, had an initial effector densi
count of zero, and again the initial value of virion density
the first individual to be infected was set at 0.5. The para
eterss i were all changed from zero~a deterministic case a

FIG. 1. ~a! Illustrating the effects of increased noise on t
response in a single individual. The maximum mean virion leve
plotted against increasing values of the noise parameters. The error
bars, which are not exact confidence intervals, are explained in
text. Here there is one equilibrium point at~10,0! which is an as-
ymptotically stable node. The parameter values arel50.5
effectors/day,m50.05 days21, r 51 days21, g50.1 days21 effec-
tors21, e50.01 days21 virions21, andk5` virions. Here and in
all subsequent figures the units of viral load may be taken as th
appropriate for certain influenza viruses, namely, 1011 per ml of in-
fected tisue @8#. The units for s throughout are virions
ml21 time21/2. ~b! As in ~a! except withm50.10. There are now
two equilibria, one of which at~10,5! is an asymptotically stable
spiral point, the other being an unstable saddle point at zero viri
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FIG. 2. Showing the effects of increasing noise level on the spread of virus across the population. In the top part of the figure a
the results in the deterministic case (s50). In the middle records, a small amount of noises50.005 speeds up the spread of virions a
causes a slight increase in the average amplitude. In the lowest record, with a much larger value ofs50.5, the spread across the populati
is greatly increased and the maximum virion level attained in individuals is uniform.
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in Ref. @2#! to 0.05 to examine the effects of noise on t
spread of the epidemic through the population. Note t
because there is no artificially imposed threshold, the en
population is infected to some extent even in the absenc
noise. However, the parameter values given above, in
absence of noise, are such that the infection invades
whole population in the absence of noise, but the individ
response, as measured by the peak viral load, beco
smaller as distance from the initially infected individual i
t
re
of
e

he
l
es

creases. This can be seen in the top part of Fig. 2, where
virion level is plotted against time withs i50—for one half
of the population. The individual responses are well dist
guished. In the initially infected individual the peak vira
density reaches a maximum value more than double tha
tained in the individuals furthest from the source. Furth
more, the time interval between the occurrences of the p
viral loads in the initially infected individual and in the las
infected is about ten days. The fact that in the absence
meter
he
FIG. 3. For three values of the virulence parameterr, we show the variation in measures of the network response as the noise para
s increases. From top to bottom are shown the mean value of the amplitudeA @see Eq.~9!#, the standard deviation of this quantity, and t
mean and standard deviation of the speedV as defined in Eq.~10!. Units for r may be taken as (5h)21.
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FIG. 4. Here we show the spatiotemporal development of the epidemic wave for the standard parameter values as given in t
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noise individuals more remote from the initially infected o
attain smaller virion levels is considered to be a deficiency
this first simpler unrestricted model.

When the noise is switched on at a low level, withs i
50.005, the spread of infection throughout the population
more rapid and the responses are more uniform. The co
sponding time courses of viral loads are shown in the mid
part of Fig. 2. Thus a small amount of stochasticity in t
background virion levels leads to an enhancement in both
amplitudes of the individual responses and in the alac
with which the infection propagates throughout the non
fected parts of the population. When the noise parameters
increased tos i50.5, the enhancement is much greater,
can be seen in the bottom part of Fig. 2. Here the amplitu
of the individual responses differ little among themselv
and the speed with which the maximum virion level prop
gates is greatly augmented. It can be seen that the sp
across the population is almost immediate. It is also notew
thy that the acceleration and increase in the response oc
despite the fact that the noise terms are additive and h
zero mean.

These phenomena are reflected in the time courses o
mean virion levels~not shown!. When there is no noise (s i
50) the mean rises slowly to a maximum level of about 2
With a small amount of noise (s i50.005) the mean virion
level rises more rapidly to attain a higher peak. With grea
increased noise (s i50.5) a truly epidemic phenomenon o
curs, as the mean virion level reaches a very large peak v
in a very short time and subsides equally rapidly. One t
observes, in this simple model, two phenomena in relatio
the effects of noise on the spread of disease through a
dynamical network that are seen in neural networks, nam
an enhancement and a synchronization of the individual
sponses.

AMPLITUDE AND SPEED

In order to more accurately quantify the effects of no
on the spread of virions throughout the host population,
n
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compute, as a function of the noise parameters, the mean
standard deviation, across trials, of the amplitudeA of the
response. Let the maximum virion level in individuali be the
random variableVmax,i . Then we put

A5
1

n (
i 51

n

Vmax,i . ~9!

Also, we compute the mean and standard deviation of
speedV of spread. The latter is here pragmatically defined
follows. Let Tmax,i be the time at which the virion level at
tains its maximum value in thei th individual. Then letTmax
be the largest of theTmax,i , and letTmin be the smallest of
these same random variables. The speed is

V5
1

Tmax2Tmin
. ~10!

In Fig. 3 we show the variation inA andV as the noise leve
increased froms50 to 0.05 for the three values of the vira
intrinsic growth parameterr 50.5, 0.75, and 1.0. It can b
seen from the plot of mean amplitude that increasingr has a
dramatic effect, which was already noted as a threshold p
nomenon in Ref.@2#. In fact one can also observe that th
rate of change of the mean amplitude with increasing nois
relatively small for all values ofr investigated. There is also
a gentle increase in the standard deviation ofA. However,
the relative increases in the means are greater than the
responding increases in the standard deviations, so tha
coefficient of variation of the maximal virion level must de
crease ass i increases. Thus the response across the pop
tion becomes more uniform. The effects of increased no
on the speed of spread are more pronounced. Forr 51 ~the
standard value!, increasing the noise parameter from 0 to 0
results in a nearly threefold increase in the speed of spr
and an extremely large concomitant increase in the stan
deviation of the spread. Further increases ins resulted in a
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FIG. 5. ~a! The virion levels are shown as functions of time for each member of the population of 31 individuals when only the
individual is initially infected. In all three records,s50.5. The upper set of results is for the unrestricted model, the middle set is fo
second model~with threshold! with the same parameters, and the third set is for that same model with randomized parameters.~b! The
maximum virion levels attained within the individuals in the three cases depicted in part~a!.
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continued growth in the overall amplitude of the respon
with no evidence of a stochastic resonance@10# effect. Simi-
lar results were found for the less virulent casesr 50.75 and
r 50.5. In Fig. 4 we show the profiles of the virion leve
across the population. In the top part, there is no noises
50), and the wavelike spread of the virus from the cen
initially infected individual throughout the population is di
cernible. In the lower part of Fig. 4 the results are shown
s50.5, at the timest54, 5.5, and 7. The progressive wav
is replaced by a stochastic and relatively haphazard gro
pattern.

MODEL WITH THRESHOLD

Although the model employed above has the advanta
of simplicity and having a straightforward Fokker-Plan
e

l

r

th

es

framework, it has two major shortcomings. First, there is
threshold for the growth of a viral population within an in
dividual. Thus any contact with an infected individual lea
immediately to a new infection. Second, there is theoretica
no upper limit to the rate at which virions can be transmitt
to an individual from all other infected individuals, regar
less of the virion population already present. We have the
fore considered a second stochastic dynamical netw
model which has both a threshold and an upper limit for
rate of transmission of virions to any individual. The effect
equations~1! are assumed to be unaltered but the viri
equations are changed as follows. Define

Ti5b(
j 51

n

Vj~12d i j !e
2au i 2 j u1s iwi . ~11!
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Then

dVi

dt
5r iVi2g iAiVi1H~Ti2v i ,thresh!min~Ti ,Ti ,max!,

~12!

wherev i ,thresh>0 is the threshold level of rate of viral trans
mission required to make a successful colonization in thei th
host, andTi ,max is the maximal rate at which virions may b
transmitted into thei th host. HereH(•) is a unit step func-
tion at the origin.

Equations~1! and ~12! were also integrated numerically
and the noise parameter varied as for the above unrestr
model. A comparison of results for the two models is sho
in Figs. 5~a! and 5~b!. In Fig. 5~a! we show three-
dimensional plots of virion levels against time in all th
members of the population, all for a noise level ofs50.5.
The top set of results is for the first model with standa
parameters~as above!; in the middle part are the results fo
the threshold model with the same set of parameters; and
third set of results are for the second model with randomi
parameters. Here the five parametersl i , r i , g i , m i , ande i
were drawn randomly from normal distributions with me
values as in the deterministic case, and with standard de
tions equal to one-tenth of the mean value. In Fig. 5~b! are
shown the maximum virion levels across the population
the three corresponding cases of Fig. 5~a!.

In Fig. 6~a! we show the mean values of the maximu
virion levels ~MMVL’s ! attained in the various individual
plotted against the noise parameters. For the unrestricted
~first! model, discussed partly above, the MMVL is larg
even in the absence of noise. Increasing the value ofs from
0 to 0.3 makes the MMVL increase, in a linear fashion,
approximately 1.7 times its value without noise. Afters
50.3, the MMVL continues to increase with the noise a
plitude at all values up tos510, and there is no evidence o
stochastic resonance in this model. In contrast, for the cho
values of the parameters, with a low threshold (v i ,thresh
50.01), there is no spread of disease at all either with
noise or with very low levels of noise, it being emphasiz
that the noise added has zero mean. A rapid increase oc
in the MMVL as s increases, until about the values
50.25, whereupon the MMVL attains a maximum. The d
tail of this maximum is shown in Fig. 6~b!. Thus a broad
based stochastic resonance effect does occur, presumab
keeping with the nonlinearities induced by the threshold a
maximal transmission rate. For the higher threshold case
vestigated, withv i ,thresh50.1, there is no spread of viru
throughout the population until considerable noise is pres
~again with zero mean!, with an apparent threshold of abo
s50.2. With greater values of the noise amplitude, t
MMVL rises quite sharply, but reaches a maximum at ab
s51.25 after which it again declines significantly as detai
in the lower part of Fig. 6~b!. Thus there is again a broad
based stochastic resonance. A similar behavior was obse
when, as indicated in the figure, the five parameters w
chosen randomly as described above. Standard deviatio
the maximum virion levels~SMVL’s!, were also obtained fo
the unrestricted model or the three cases of the second m
mentioned above. In the first model, the SMVL decrea
rapidly at first ass increased, reflecting the uniformizatio
ed
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FIG. 6. ~a! Comparison of results for the unrestricted mod
@Eqs. ~1! and ~4!# with those of the model with a threshold and
maximum transition rate@Eqs. ~1! and ~12!#. Mean values of the
maximum virion levels are plotted against the noise parametes.
The uppermost curve is for the first model, whereas all other cur
are for the second model. For the curve markedlow threshold,
v i ,thresh50.01 for all i’s. For the remaining curvesv i ,thresh50.1 for
all i’s and in one case, as indicated, the parameters are random
across the population.~b! Detail of the maxima in the mean max
mum virion levels for the model with a threshold for the cases
low and high thresholds. For explanations, see text.
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of the response amplitude already noted above. For value
the noise parameter greater than about 0.5, the SMVL
creased, probably because the deterministic component
masked by the noise. In the second model, with a low thre
old, the SMVL grew quickly withs, but remained very
small, never exceeding a value of 4.6 or1

10 of the mean. In
the high threshold case, the SMVL remained very sm
attaining a maximum value of about 10% of the mean wh
s50.4. With randomized parameters the SMVL is, as e
pected, much greater, being as large as 33% of the m
Thus one sees that, in the second model, the noise is m
crucial for spreading the disease but that the variation
individual responses is, for nonrandom parameters, sm
The variability in responses is only significant if the fiv
parameters themselves are drawn from probability distri
tions.

DISCUSSION AND CONCLUSIONS

The spread of disease by virus or bacteria in human
other populations involves two main components, both
which must be included in a mathematical treatment. Fi
the dynamical processes which describe the within-h
growth of the population of invading, disease-causing p
ticles ~e.g., virions!. This is necessary because each dise
has its particular temporal pattern of development, a fac
which has been ignored in classical~SIR or SEIR! models.
Second, a plausible model must contain a description of
dynamics of spread from infected to uninfected individua
In our previous communication@2# we endeavored to intro
duce models with these two components by employin
dynamical systems approach to both the within-host de
opment of a viral population and the transmission of virio
from infected to uninfected hosts. Whereas previously
considered only deterministic effects, here we have
dressed the inclusion of stochastic effects by the addition
white Gaussian noise to the dynamical equation satisfied
the virion numbers for each individual. Although there a
many possibilities for the way in which noise is introduce
we chose the simplest as a useful starting point which g
the first model. The effects of noise on the growth of a vi
population in an isolated individual were studied first, a
led to the surprising result that the mean virion level w
depressed as the amplitude of the noise increased. In m
cases noise acts to increase the mean of a dynam
variable—for example, it increases the firing rate in neuro
with subthreshold voltage modeled by an Ornste
Uhlenbeck process@11#. However, the effect of noise varie
depending on the mathematical properties of the system@12#.
When noise was added to the viral epidemic network as
Eqs. ~1! and ~4! above, its most noticeable effect was
accelerate the spread of the disease across the populatio
.
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to make the amplitude of the response individuals more u
form across the population. No stochastic resonance was
served in this unrestricted transmission model. We also c
sidered a more realistic but less tractable model in wh
there is a threshold rate required to instigate a new v
infection and a maximum rate of transmission to any in
vidual from other host. Here the effect of noise was mo
dramatic, as it could give rise to an epidemic under circu
stances where there was no spread of infection in the abs
of noise. Furthermore, a broad-based stochastic reson
was found in this model. There are many factors which
did not have the space to discuss, such as the effect
various geometrical patterns of initial infection—see R
@2#, where we reported some details of this aspect for a
terministic model with threshold.

We remark that noise or stochastic efects may be in
duced into a viral epidemic dynamical spatial network
several ways. For example, apart from the additive no
considered in this paper the transmission coefficients can
made into random processes. This can be achieved by m
ing the number of encounters between individuali and indi-
vidual j a Poisson process,Ni j , with rate parameterl i j
5e2au i 2 j u. In the absence of threshold or limiting effect
the equations for the viral dynamics then become

dVi

dt
5r iVi2g iAiVi1b(

j 51

n

Vj~12d i j !
dNi j

dt
, ~13!

or there may be additive noise as well. An interesting dif
sion approximation is obtained for Eq.~13!, namely,

dVi

dt
5r iVi2g iAiVi1b(

j 51

n

Vj~12d i j !l i j

1bA(
j 51

n

Vj
2~12d i j !l i j

2 dWi

dt
. ~14!

A threshold may be introduced as above, but a more con
nient way to do this is to introduce a cubic nonlinearity as
Ref. @2#,

dVi

dt
5r iVi S 12

Vi

ki
D ~Vi2u!1b(

j 51

n

Vj~12d i j !l i j

1bA(
j 51

n

Vj
2~12d i j !l i j

2 dWi

dt
, ~15!

where u is a threshold viral density. The use of Eq.~15!
makes clear the analogy between neural and epidemic
work models. We will pursue this aspect in future papers
-
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