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Epidemic spread and bifurcation effects in two-dimensional network models with viral dynamics
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We extend a previous network model of viral dynamics to include host populations distributed in two space
dimensions. The basic dynamical equations for the individual viral and immune effector densities within a host
are hilinear with a natural threshold condition. In the general model, transmission between individuals is
governed by three factors: a saturating functgfn) describing emission as a function of originating host
virion level; a four-dimensional arrafp that determines transmission from each individual to every other
individual; and a nonlinear functioR, which describes the absorption of virions by a host for a given net
arrival rate. A summary of the properties of the viral-effector dynamical system in a single host is given. In the
numerical network studies, individuals are placed at the mesh points of a uniform rectangular grid and are
connected with am?x n? four-dimensional array with terms that decay exponentially with distance between
hosts;g is linear andF has a simple step threshold. In a populationNaf mn individuals, N, are chosen
randomly to be initially infected with the virus. We examine the dependence of maximal population viral load
on the population dynamical parameters and find threshold effects that can be related to a transcritical bifur-
cation in the system of equations for individual virus and host effector populations. The effects of varying
demographic parameters are also examined. Changesnhich is related to mobility, and contact rgealso
show threshold effects. We also vary the density(raihdomly choseninitially infected individuals. The
distribution of final size of the epidemic depends stronglyNgrbut is invariably bimodal with mass concen-
trated mainly near either or both ends of the intefVBN]. Thus large outbreaks may occur, with small
probability, even with only very few initially infected hosts. The effects of immunization of various fractions
of the population on the final size of the epidemic are also explored. The distribution of the final percentage
infected is estimated by simulation. The mean of this quantity is obtained as a function of immunization rate
and shows an almost linear decline for immunization rates up to about 0.2. When the immunization rate is
increased past 0.2, the extra benefit accrues more slowly. We include a discussion of some approximations that
illuminate threshold effects in demographic parameters and indicate how a mean-field approximation and more
detailed studies of various geometries and rates of immunization could be a useful direction for future analysis.
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[. INTRODUCTION vidual dynamical growth patterns as well as the various im-
mune states of the individual hosts, giving a much more
In recent papergl,2] we have considered new math- accurate representation of the procesess of growth and spread

ematical models for the spread of viral infection within hu- of the disease. Temporal and spatial patterns of drug treat-
man or other populations in which both the dynamics of viralment and vaccination may also be incorporated in such dy-
(or bacterial growth within individuals and the interactions Namical models. Furthermore, within a given viral type there
between individuals are taken into account[lhthe model are usgall_y dlfferent_stra_ms that have differing propert!es of
was essentially deterministic whereas [ a stochastic transmission and_ differing responses to. such contamment
model was introduced. In both of those papers the host popU'€asure$8,9]. This aspect can be easily incorporated using
lation was considered to be distributed at discrete points on e present approach with an additional index on the viral
line segment. Threshold phenomena were observed with ré—tate variaple.
spect to several parameters controlling the dynamics of viral

growth and of immune system efficiency. [2] a broad- Il. DESCRIPTION OF MODEL

based stochastic resonance effect was observed as the envi- o S _
ronmental viral noise parameter increased|3h heteroge- The individual hosts are assumed, for simplicity, to reside
neous spatial effects were taken into account in deterministief be located at positions; ,i=1,...,m;j=1,...n, rela-

and stochastic SEIR frameworks. Our approach differs frontive to some fixed rectangular coordinate system in the plane.
classical SEIR or SIR mode[8—6] or social network mod- Although these posmqns may be arbitrary, they are assumed
els[7], because in those the variable describing the state dhroughout the numerical work that follows to be at the regu-
the host as the amount of infection is discrete whereas ours |8 1attice points of a uniform rectangular grid. Ttig) host
continuous. Furthermore, in the present approach differerftas an effector population or densiy and a viral popula-

types of viruses may be distinguished in regard to their indifion or densityv;;, where these @n variables are all non-
negative. “Effector” is a blanket term covering magom-

plexly generatedimmune system agents that lead to the
*Corresponding  author.  Email  address:  tuckwell@ elimination or annulation of the disease-causing virus or
b3e.jussieu.fr other noxious patrticles. In the general form of the model it is
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assumed that the following differential equations govern the dvj;
evolution of the system for given initial conditions: W:rijvij —vyijavi;+F E 2 Birjrijvirjr |- 4
i’ J-r
da.ij
W=)\ij—uijaij+eijaijvij , (1) IIl. THE VIRAL-EFFECTOR SYSTEM
IN ONE INDIVIDUAL
Vi _ il 1— Vi) _ ¥ij&ijVi; both on the individual dynamical responses to the arrival of
dt Kij virions and to the manner in which the populations of virions

within individuals are connected. It is therefore useful to
ﬁi,jgijg(vi,j,)} (20  consider in some detail the properties of the viral-effector
system in one individual. Indeed, it will be seen that a con-
siderable part of the network behavior is explained by such a

The parameters have the following meanings for individualconsideration of the corresponding system for one indi-
(i,j):\j is the rate of production and/or transport of effec- vidual. The latter is simply

tors, wj; is the death(clearancgrate of effectorsg;; is the da

rate of production of effectors in response to a unit viral — =\-—pa+eav, (5)
population,r; is the intrinsic growth ratémeasure of “viru- dt

lence” and referred to as the virulence parametdr the

viral population k;j; is the saturation value of the viral popu- d_U —to—vav 6)
lation, andy;; is the clearance rate of virus particles. The dt Yau,
quantitiesg;j, j;,i',i=1,...m; j',j=1,... n are the vi- _ _ _ _
ral transmission rates from individual’(j’) to individual ~and has been analyzed in detail, along with various models
(ij). F(-) is a possibly nonlinear function that incorporates for human immunodeficiency virus-1, in R¢10]. Note that

the ability of the target individual to absorb virions when the case. =0 gives the classical Lokta-Volterra systéii].
they arrive at a certain rate. This could also dependign There are two critical points,P1=(\/«,0) and P,

but is assumed to be the same for all individuals. The amourte (r/y,[ur =\ y]/er). The eigenvalues associated wih

of virus emitted from the hosi (,j’), when his viral level is are \;=—pu and A;=r—(\y)/u. If X=0, then\;=—pu
virjr, isg(virj). Itis likely that in realityg is an increasing and A,=r so that the critical point is an unstable saddle
yet saturating function of its argument, such gé&)=1  point. If X#0, thenP, is an unstable saddle point Xy
—e % in scaled form. Thus in summary the general form of<rux and an asymptotically stable node\ify>r u. The ei-
transmission process has three componantiescribes the genvalues associated wilty are

amount emitted from any host; the quantiti@s;. ;; deter-

mine the rate of transmission of the emissions to other hosts; 1

— + 2+ 2 _ 3
andF determines the amount absorbed into a target host. N2 2r =N +4r¥ () —dur).

rijU
+F[ >

i

( The properties of the above viral network clearly depend
I

it

J

If \=0 the eigenvalues ane,= —i+/ur and\,=i/ur, so

thatP, is a center. I\ y> ur, thenk ;<0<\, so thatP, is
In the numerical work we have made the strength of transan unstable saddle point. Xfy<ur, then there are two dis-

mission between individuals an exponentially decaying functinct possibilities:(a) 4r2/(\y)?[ ur — yA]<1. In this case,

Simplifications in the numerical work

tion of the distance between them with the eigenvalues are distinct and negative, which mékesn
— — asymptotically stable node(b) 4r?/(\y)?[ ur—yrn]>1.
Birjrij=B(L= 8 ipexd —a (i’ =)+ (" = )%, The eigenvalues are then a complex conjugate pair with a
3 negative real part. Hend®, is an asymptotically stable spi-
ral point.
where 6;,j, ;=1 if i’=i andj’=] but is otherwise zero. Now, if Ny>ur, the pointP, occurs at negative and

This incorporates a truly spatial effect and represents an alence is not at a biologically relevant value. There is then
eraging of the effects of various members of the communityjust one meaningful critical poir®, on thea axis and this is

on one another, as the distances between them fluctuate. F@n asymptotically stable node. Thus no matter where solu-
thermore, the functiory has been taken as linear, which tions start in the non-negative quadrant, they end up.at
should be accurate at small and modest virion densities. Theith zero virions and witha(<)=\/u effectors. On the
function F has been assigned a threshold value such thaither hand, wheir y<ur, there is an unstable saddle point
F(x) is zero for arguments less than a critical value, as deen thea axis atP, together with an equilibrium poirf,, in
scribed fully in Ref.[1]. That is, we may puF(x)=H(x the positive quadrant that is either an asymptotically stable
—Xarit), Wherexg;; is the critical rate at which virions must node or an asymptotically stable spiral point. Then whenever
arrive at an uninfected individual in order to instigate a susthe initial valuev(0) is positive, regardless of whethaf0)
tained infection. The value df; has been set at infinity. is positive or zero, the system ends upPat Thus in such
Thus Eq.(2) becomes simply cases it is impossible to end up with zero virions; an equi-
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librium is reached withr/ y effectors and r —\ y)/er viri- or
ons. If N is relatively small, the solutions undergo damped
oscillations on their approach t8,; if A is large enough
solutions show no oscillatory behavior and proceed directly
to P,. At the critical valuex y=r u where there is a change
of stability of P, and P,, the two critical points coincide,
both being located at\/w, 0) with P, emerging as the as-
ymptotically stable steady state fof u<<r/y. Thus, there is

a transcritical bifurcation with P, emerging as\/u de-
creases below/y. This transcritical bifurcation plays a key
role in understanding some of the threshold effects that will
be seen below in the numerical results.

Max mean virion level

IV. NUMERICAL RESULTS FOR THE NETWORK

In the numerical work, the standard set of immune and 0 53 Py - v 33 s s
viral parameters are assumed to be the same for each ind)~ ' ' ' ' ' ' ‘
vidual. These values are based approximately on those the
could be found for the influenza virus as explained it R,
A=0.5, ©«=0.05,6=0.01,r=1, andy=0.1. This choice is T e
at the bifurcation point for one individual so thBt=P,. e SUNPRREE [
We distinguish the above parameters, which are called dy-
namical system parameters, from the following two param-
eters, which are calledemographic parameterand which
completely describe the four-dimensional arrgy:;: ;; .
These two parameters are; which determines the spatial
range of an infected host's emitted virions; aBd which
measures the mean contact rate of individuals. Since a larg
value of & implies limited influence, the reciprocal of can
be used to quantify thenobility of the individuals in the
sense of how far they travel within the population. Thus the
model is more versatile than ones in which contact is re-
stricted to nearest neighbors only ad ir2].

Virient level
© o - ~ [~} & ©o ) ~ © ©

- 05
»_;(/\ 0.45
(b) e ° N

A. Dynamical system parameters

Th five intrinsic d ical i ek FIG. 1. (a) The maximum mean virion level across the popula-
ere are ive Intrinsic dynamica’ System parameieis, tion in one trial as the immune paramelewaries. The remaining

€1, andy, and,t,he superimpqsed dynamical parameters parameter values are the standard set—see text. Based on influenza
the threshold virion level for viral growth in any host and the data, units of time are approximage§ h and for virus particles
starting valuey (0) of that growth[1]. The latter two param-  approximately 184ml of infected tissue(b) Three-dimensional
eters are kept fixed throughout this article. We first show inepresentation of the time courses of the mean virion level across

Fig. 1(a), the maximum mean virion level the population for various, from which are extracted the maxima
1 shown in Fig. 1a). The actual values of and the units are as in
— Fig. 1(a).
Umaxzma)NE E Uij(t) 9. 1@
t=0 [ J

that, with the parameters used here, occurs in fach at
across the population versus the effector source parammeter=0.5. For the network, the change point is slightly displaced
that is a measure of the tone or state of the host immunin the direction of larger values of. In individuals the orbits
system. These results are based on one trial for &aghh are qualitatively different on either side of the bifurcation
the same initial configuration of 40 infected individuals, ran-point. For large\, the steady state is with zero virions
domly chosen in a population on a square 40 by 40 lattice aivhereas for values 0f<<0.5, the final approach is to a criti-
a rate therefore of 2.5%. It can be seen that for values of cal point with a positive virion level.
greater than 0.35, the degree of viral growth and spread is The actual time courses of the mean virion density across
relatively very small. As\ decreases through 0.35, there oc-the population in one triak (t) = (1/N)Z;Z;v;;(t), for vari-
curs a sharp increase in the overall viral level throughout th@us \ are shown in the three-dimensional plot of Figb)l
population with a rapid rise untih=0.46 and further de- One can see clearly the differences in the trajectories on
creases result in a steady rise in maximum mean virion levekither side of the bifurcation point for the viral-effector sys-
The threshold effect is explicable in terms of the transcriticatem in one individual. At the smaller values wfthere are
bifurcation in the effector-virus system for one individual apparent slow and gentle oscillationsuift) that may reflect
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the oscillations in the individual host viral levels, though thehosts that are touched by the dise&geus) throughout the
latter are not expected to be synchronized. These results weftiene course of the numerical experiment. The two indepen-
obtained with the remaining intrinsic dynamical system pa-dent variables in this figure are and the initial numbeN,
rametersu, €, r, andy, at fixed values as given above. For of infected individuals in a total population &f=1600. For
different sets of values of these other parameters, the agach of the 49 combinations ™, and a, 40 trials were
proximate threshold value of is, based on the birfurcation performed, with a randomly chosen initial configuration of
analysis for an individual\o=ur/y. There is no depen- infected hosts. The mean size of the epidemic obtained
dence org, but this parameter determines the overall magni-shows for each value &, a relatively abrupt threshold as
tude of the individual, and hence population, virion level decrease§.e., mobility increases For the values ol used
through the asymptotic value afj;(t) at the equilibrium  here, the critical valuer, lies between 0.8 and 0.85, and is a
point P,=(r/y,[ur —Ny]/er). slowly increasing function oN,. Thus whenNy= 10, we
Results obtained when was varied from the standard have a,~0.8, whereas wheiN,=40, we havea.~0.85.
value of unity show a similar sharp threshold effect as wasrhis behavior is easily accounted for by observing that a
found in[1]in one space dimension. This can be seen in Figlarge epidemic may occur even if the density of initially
2(a), where the mean maximum virion level is plotted for infected individuals is small, providing the mobility of indi-
values ofr from 0.5 to 1.5. The threshold effect is seen to beyiduals and hence their domain of influence is latgmall
sharper than that fax, which implies a greater sensitivity to ).
this parameter with respect to the degree of invasion of the Wwe have also varied the demographic paramgtaerhich
host population. Now, since it is possible that the number ofeflects the frequencies of collision between individual hosts.
infected hosts could be large even with a small mean maxias indicated by the analysis below, this parameter shows a
mum virion level, we have examined also the distribution ofthreshold effect. This can be seen by inspection of Fi(®. 4
the final sizeXy of the epidemics that ensue for various and 4b). In the first of these figures we see a three-
values ofr on either side of the critical value.~\y/u  dimensional plot of population mean virion lev@ne tria)
=1. In Fig. 2b) we show the histograms of the total num- vs time for various values g. Many values were employed
bers of infected individuals with the valuesiof 0.90, 0.97, nearB=0.01 to examine any fine structure that might exist
1.00, and 1.02. Here, 50 trials were performed for each valugh the neighborhood of that value. In each of these simula-
of r with randomly assigned configurations of 40 initially tions, the same initial configuration of infected hosts is em-
infected individuals. All other parameters were held at theployed. It can be seen how very differently the system be-
standard values. It can be seen that the nature of the distiaves as3 decreases away from 0.01. At the latter value a
bution of X is very different for these four values ofWith  rapid and large upsurge occurs in the population virion level
r=0.9, the distribution is fairly tightly concentrated at valuesfollowed by an at first rapid, then relatively slow, decay
less than 100; for=0.97 the distribution is somewhat more phase. With not very much smaller contact rates there are a
spread out and fairly uniformly concentrated at values les$ew undulations in virion level but these have small and
than 200; then at=1.00 a very different situation ensues decreasing amplitudes and it could be said that no epidemic
with all the mass concentrated at large values between 12Qftcurs. These phenomena are further highlighted in Fly). 4
and 1600; and finally, witli=1.02, there is no mass except where we plot two properties of the population response
at the maximum value cXg=N=1600. The variation with against3, now on a linear scale. The solid curve shows the
respect to changes inis further highlighted in Fig. @). maximum population mean virion level whereas the dash-dot
Here the mean value oX; is plotted against for many  curve gives the timédivided by 10 at which the maximum
values ofr on either side of .. There is a very abrupt in- was attained. An almost discontinuous change in the time to
crease inE(Xg) nearr=1. Furthermore, it can be seen by maximum occurs just to the left g#=0.01, whereupon this
comparing Figs. @) and Zc) that asr increases beyond quantity declines at first rapidly then slowly as the contact
1.02, E(Xg) does not(cannoj increase even though the rate increases.
maximum mean virion level is still increasing. This differ-  The final demographic parameter we have varied is the
ence arises because the teimfecteddoes not distinguish numberN, of initially infected individuals; the distribution
degrees of infection. Results obtained by varying the remainef such individuals is always assumed in the simulations to
ing dynamical system parameters are not reproduced herbe random across the population. Of primary interest is the
Rather, we proceed to an examination of the effects oform of the probability distribution of the final size of the
changes in what we call demographic parameters as these apidemic so in Fig. & we show the histograms of this
more pertinent to network effects. random variable for various values b, obtained from 50
simulations. When the initial fraction of infected individuals
is very small at 0.0625% witiNg=10, the distribution of
final sizes is concentrated at small values with a small
We will first ascertain the quantitative effects of changesamount of mass between about 1000 and the maximum num-
in the parametes, which determines the extent of the spatial ber (recall N=1600. With a relatively small increase to
spread of viruses from any infected individual, and which weNy=15, half of the mass is at very small sizes and we see
call the mobility parameter—Ilarge values®@torresponding that the probability of a major outbreak is roughly 0.5. When
to small mobility. Figure 3 shows a three-dimensional plot ofNy= 20, so that slightly more than 1% of the population is
the size of the epidemic, as measured by the total number afitially infected, the probability of a significant epidemic is

B. Demographic parameters
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FIG. 3. Three-dimensional representation of mean final size,
E(Xg), of the epidemic as the initial number of infected individuals
(No) and the mobility parametdir, dimensionless or per unit dis-

50
40 4c
30 3¢
| tance between individualyary. Results based on 40 trials for each
i = of the values o, anda.

Number of trials

increased to about 0.75 and whilg=40, a major event is
certain and in fact the probability is close to one that nearly
the entire population will be infected. For a more complete
| set of values oNg, the mean final size of the infected popu-
‘ lation is shown plotted against this variable in Figh)5 The
increase in mean size is fairly smooth and saturating with no
threshold effect. The saturation point at which increases in
Ny cause no further increase in mean epidemic occurs at
aboutNy=60. That is, if a critical mass of about 3.75% or
more of the population is infected initially, then the entire
population will end up being infected. However, it must be
borne in mind that this result is based on nonstochastic dy-
eeer / © namics, the only random component in the present analysis
/
|

0 500 1600 15C0 Q 500 1000 1500

Number of trials

10 I 10

1 :
0 500 1000 1500 0 500 1000 1500
Number infected

(b) Number infected

1800

being in the choice of the initially infected individuals. When
N, is small, the only factothere that determines whether or
not a major outbreak occurs is the pattern of the geometrical
‘ arrangement of the initially infected hosts.
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C. Effects of immunization

@

3

S
T

A very important aspect of the theory of epidemics is the
/ effectiveness of programs of immunization. Extensive field
monitoring programs are in progress to aid in an assessment
2°°/f,/4 of the results of patterns of influenza vaccinatja]. As is
. ‘ ; well known, some such programs have been very successful

Q L :
0.8 0.95 * 1.06 11 115 12
(C) Viral growth parameter, r

Average final number of infected individuals

in eliminating or nearly eliminating some diseases, such as
h _ ion level h | poliomyelitis and smallpox. Within the framework of a spa-

_ FIG. 2. (a) The maximum mean virion level across the popula- jja| model that includes both effector and viral dynamics,
tion in one trial as the viral growth rate parametdper unit time there are several ways in which one could attempt to ascer-
varies. The remaining parameter values are those of the standa{gin the effects of immunization. We have chosen to repre-
set. Units of time are a_pproximayeB h and _for virus particles sents an immunized individual .as one who has on a prior
approximately 18/mi of infected tissue(b) Histograms of total occasion encountered the virus pertinent to the disease under

numbersXg of infected individuals for various values of the viral i . W heref hat the eff | i
growth rate parameter (per unit timg, so chosen to lie on either consideration. We assume therefore that the eftector level in

side of the criticalbifurcation value. Histograms obtained from 50 &n immunized host is equal to the equilibrium value that
trials with random assignments of 40 initially infected individuals Would have been attained had the virus run its course of

in a total population of 1600c) Mean value ofX; plotted against 9rowth and equilibra’{ion in that indiyiduql. .Wilt_h t.he. standard
r (per unit timg. Same set up as in Fig(9 but with more data  S€t of parameters this means that if individ(g) is immu-
points. nized, thena;;(0)=N/u=10 since we assume that orbits
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FIG. 4. (a) Mean population virion level plotted against time
and contact rate paramet@r (per unit timg. Units of time and
virion level here and in Fig. @) as in Figs. 1@ and Xb). (b)
Maximum population mean virion levésolid curve and time(di-
vided by 10 to maximum(dash-dot curvevs contact rate param-
eter B (per unit time.

FIG. 5. (a) Histograms of final size of epidemic for four values
of Ng, the initial number of infected individuals. In each case 50
trials were performedb) Showing the mean final size W, for a
broad range of number of initially infected individuals.

dence onp, the form of the curve being almost linearly de-
creasing for values g from 0 to 0.2.

end up atP,. We thus chose, as in the previous simulations,

a random selection dfl;=40 initially infected individuals. V. APPROXIMATIONS AND A MEAN-FIELD APPROACH

We call the immunization ratp and let this be the rate of

immunization of the individuals who are not initially in- . . .
. . . L and growth of a virus throughout a population of hosts dif-

fected. Thus, since immunized individuals are protected L . .
ers qualitatively from previous approaches. For example, in

they are excluded when we determine the infection rate OLarIy lattice models of epidemic spre&#4] and in more

the remainingS:(N—No)(l—p) susceptible individuals' recent SIR automata network mod¢lsb], the set of states
and express this as a percentage. The results for the 50 SiMiaijaple at each lattice point is discrete and finite. The
lations with each immunization rate are shown in Fig®) 6 present model gives the states of the individuals as solutions
and @b). The histograms of the percentage infected for sixyy coupled systems of differential equations[1d] and[15]
values ofp from 0.02 to 0.4 are shown in Fig(#. The 3 mean-field approach has been used in order to estimate
transition from low to hlgh immunization rate is smooth with |ong term behaviors of the networks, especia”y if there ex-
nearly all the mass at unity when the immunization rate iSsts a unique steady state. An attempt at a similar approxi-
negligible and nearly all the mass near zero when the immumation with the epidemic network model with viral dynam-
nization rate is 0.4. The mean of such distributions is plottedcs described herein proceeds by assuming that each
againstp in Fig. 6(b). Again one sees a fairly smooth depen- individual is not far from the mean for the system. That is,

The mathematical model considered here for the spread
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FIG. 6. (a) Histograms of percentag®f those who could be
infected of finally infected individuals for various immunization
rates,p (dimensionless (b) Mean percentagéof those who could
be infected of finally infected individuals plotted against immuni-
zation ratep (dimensionless

thea;; andvj; can be replaced by the average valaesdy
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The threshold effect ag varies can be explained, heuris-
tically, as follows. For simplicity, consider the one-
dimensional modd]1,2], with a linear emission functiog so
that

dv; o
d_tIZriUi_'inai'Fﬂ; Ujeiallijl. (8)

If «is not too small, the dominant contributions to the sum
in Eqg. (8) are from the nearest neighbors so that, provided
individual i is not at the edges of the population,

dUi w

ot fiviTyviait e [vi-1F Vi)
Further argument that is roughly continuous in the sense
that neighbors have approximately similar virion levels,
leads to

dUi —w
Hm[rﬁ—ZBe ]vi—yviai.

This expression makes it evident that changes in the demo-
graphic parameters and B are essentially effective changes
in the viral intrinsic growth rate parameterHence, if with a
givenr the system is near a bifurcation point, then changes
in @ and B8 may push the system to the other side of the
bifurcation point. Thus, such changesarand 8 may lead to
similar threshold phenomena as are found whetself is
varied.

VI. CONCLUSIONS

A complete quantitative study of epidemics involves de-
mographic components, which reflect properties of the host
population and components that describe the dynamics of the
invading organisms that are usually either virus particles or
bacteria. Most of the previous studies have omitted the sec-
ond of these components, as in the family of SIR or SEIR
models. It is also necessary to include spatial distributions of
hosts, which may be done via partial differential equations of
the diffusion typg 16], or as integrodifferential equatioh%]
or in a discrete framework as employed in this paper. We
have considered here a two-dimensional Cartesian system of

across the population. This may be expected to be approxhosts whose viral populations interact with one another via
mately valid if the transmission of virus between members otontact and transmission. The properties of the dynamical
the population is rapid. The latter occurs if the mobility of system describing the viral-effector system are very influen-

individuals is high that implies that the parameteis close
to zero. In such a case we have approximately

da o

a:)\—,ua‘l' eav, (7a)
dv o
HZ[r-i-,B(N—l)]v—'yav, (7b)

tial in determining the magnitude and time course of out-
breaks of disease, and for this reason we have included a
brief analysis of the virus-effector system in a single indi-
vidual. Most relevant is the occurrence of a transcritical bi-
furcation that gives rise to threshold effects as effector and
viral parameters change. In particular, we have determined
the temporal evolution of the population virion level and the
distribution of the total numbers of infected individuals as
parameters vary on either side of the bifurcation. We have

whereN is the total number of infected and uninfected indi- also examined these quantities as certain demographic pa-

viduals. Initial behavior may be studied by replaciNgby
No. The system(7a) and (7b) is easily solved numerically
with a Runge-Kutta method.

rameters, such as contact rate, mobility, and the number of
initially infected individuals change. Finally we have exam-
ined how immunization rate affects the final size of the epi-
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demic. We have found that the greatest benefit is obtainedrder to obtain analytical results concerning the general ef-
when the immunization rate increases up to 20%, with difect of viral spread without specific regard to exact spatial

minishing returns for further increases. In future work geo-configurations. Such an analysis has been carried out for
metric effects in two and three space dimensions should bgany of the lattice models if14] and[15].

explored in detail, especially with respect to the effects of

patterns and spatial rates of immunization. Of particular in-

terest will be simulation with varying densities of population, ACKNOWLEDGMENT
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