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Epidemic spread and bifurcation effects in two-dimensional network models with viral dynamics
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We extend a previous network model of viral dynamics to include host populations distributed in two space
dimensions. The basic dynamical equations for the individual viral and immune effector densities within a host
are bilinear with a natural threshold condition. In the general model, transmission between individuals is
governed by three factors: a saturating functiong(•) describing emission as a function of originating host
virion level; a four-dimensional arrayB that determines transmission from each individual to every other
individual; and a nonlinear functionF, which describes the absorption of virions by a host for a given net
arrival rate. A summary of the properties of the viral-effector dynamical system in a single host is given. In the
numerical network studies, individuals are placed at the mesh points of a uniform rectangular grid and are
connected with anm23n2 four-dimensional array with terms that decay exponentially with distance between
hosts;g is linear andF has a simple step threshold. In a population ofN5mn individuals, N0 are chosen
randomly to be initially infected with the virus. We examine the dependence of maximal population viral load
on the population dynamical parameters and find threshold effects that can be related to a transcritical bifur-
cation in the system of equations for individual virus and host effector populations. The effects of varying
demographic parameters are also examined. Changes ina, which is related to mobility, and contact rateb also
show threshold effects. We also vary the density of~randomly chosen! initially infected individuals. The
distribution of final size of the epidemic depends strongly onN0 but is invariably bimodal with mass concen-
trated mainly near either or both ends of the interval@1,N#. Thus large outbreaks may occur, with small
probability, even with only very few initially infected hosts. The effects of immunization of various fractions
of the population on the final size of the epidemic are also explored. The distribution of the final percentage
infected is estimated by simulation. The mean of this quantity is obtained as a function of immunization rate
and shows an almost linear decline for immunization rates up to about 0.2. When the immunization rate is
increased past 0.2, the extra benefit accrues more slowly. We include a discussion of some approximations that
illuminate threshold effects in demographic parameters and indicate how a mean-field approximation and more
detailed studies of various geometries and rates of immunization could be a useful direction for future analysis.

DOI: 10.1103/PhysRevE.64.041918 PACS number~s!: 87.10.1e, 05.40.2a, 02.50.2r
h-
u
ira
s

op
on
h
vi

e

is
ro
-
te
rs
re
d

-
e
ead
at-
y-
e
f
nt
g
al

e

e.
ed
-

e
r

is
ll@
I. INTRODUCTION

In recent papers@1,2# we have considered new mat
ematical models for the spread of viral infection within h
man or other populations in which both the dynamics of v
~or bacterial! growth within individuals and the interaction
between individuals are taken into account. In@1# the model
was essentially deterministic whereas in@2# a stochastic
model was introduced. In both of those papers the host p
lation was considered to be distributed at discrete points
line segment. Threshold phenomena were observed wit
spect to several parameters controlling the dynamics of
growth and of immune system efficiency. In@2# a broad-
based stochastic resonance effect was observed as the
ronmental viral noise parameter increased. In@3# heteroge-
neous spatial effects were taken into account in determin
and stochastic SEIR frameworks. Our approach differs f
classical SEIR or SIR models@3–6# or social network mod
els @7#, because in those the variable describing the sta
the host as the amount of infection is discrete whereas ou
continuous. Furthermore, in the present approach diffe
types of viruses may be distinguished in regard to their in
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vidual dynamical growth patterns as well as the various im
mune states of the individual hosts, giving a much mor
accurate representation of the procesess of growth and spr
of the disease. Temporal and spatial patterns of drug tre
ment and vaccination may also be incorporated in such d
namical models. Furthermore, within a given viral type ther
are usually different strains that have differing properties o
transmission and differing responses to such containme
measures@8,9#. This aspect can be easily incorporated usin
the present approach with an additional index on the vir
state variable.

II. DESCRIPTION OF MODEL

The individual hosts are assumed, for simplicity, to resid
or be located at positionsxi j ,i 51, . . . , m; j 51, . . .n, rela-
tive to some fixed rectangular coordinate system in the plan
Although these positions may be arbitrary, they are assum
throughout the numerical work that follows to be at the regu
lar lattice points of a uniform rectangular grid. The~i,j! host
has an effector population or densityai j and a viral popula-
tion or densityv i j , where these 2mn variables are all non-
negative. ‘‘Effector’’ is a blanket term covering many~com-
plexly generated! immune system agents that lead to th
elimination or annulation of the disease-causing virus o
other noxious particles. In the general form of the model it
©2001 The American Physical Society918-1
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assumed that the following differential equations govern t
evolution of the system for given initial conditions:

dai j

dt
5l i j 2m i j ai j 1e i j ai j v i j , ~1!

dv i j

dt
5r i j v i j S 12

v i j

ki j
D2g i j ai j v i j

1FF(
i 8

(
j 8

b i 8 j 8,i j g~v i 8 j 8!G . ~2!

The parameters have the following meanings for individu
( i , j ):l i j is the rate of production and/or transport of effe
tors, m i j is the death~clearance! rate of effectors,e i j is the
rate of production of effectors in response to a unit vir
population,r i j is the intrinsic growth rate~measure of ‘‘viru-
lence’’ and referred to as the virulence parameter! of the
viral population,ki j is the saturation value of the viral popu
lation, andg i j is the clearance rate of virus particles. Th
quantitiesb i 8 j 8,i j ,i 8,i 51, . . . ,m; j 8, j 51, . . . ,n are the vi-
ral transmission rates from individual (i 8, j 8) to individual
~i,j!. F(•) is a possibly nonlinear function that incorporate
the ability of the target individual to absorb virions whe
they arrive at a certain rate. This could also depend on~i,j!
but is assumed to be the same for all individuals. The amo
of virus emitted from the host (i 8, j 8), when his viral level is
v i 8 j 8 , is g(v i 8 j 8). It is likely that in realityg is an increasing
yet saturating function of its argument, such asg(x)51
2e2x in scaled form. Thus in summary the general form
transmission process has three components:g describes the
amount emitted from any host; the quantitiesb i 8 j 8,i j deter-
mine the rate of transmission of the emissions to other ho
andF determines the amount absorbed into a target host

Simplifications in the numerical work

In the numerical work we have made the strength of tran
mission between individuals an exponentially decaying fun
tion of the distance between them with

b i 8 j 8,i j 5b~12d i 8 j 8,i j !exp@2aA~ i 82 i !21~ j 82 j !2#,
~3!

where d i 8 j 8,i j 51 if i 85 i and j 85 j but is otherwise zero.
This incorporates a truly spatial effect and represents an
eraging of the effects of various members of the commun
on one another, as the distances between them fluctuate.
thermore, the functiong has been taken as linear, whic
should be accurate at small and modest virion densities. T
function F has been assigned a threshold value such t
F(x) is zero for arguments less than a critical value, as d
scribed fully in Ref.@1#. That is, we may putF(x)5H(x
2xcrit), wherexcrit is the critical rate at which virions must
arrive at an uninfected individual in order to instigate a su
tained infection. The value ofki j has been set at infinity.
Thus Eq.~2! becomes simply
0419
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dv i j

dt
5r i j v i j 2g i j ai j v i j 1FF(

i 8
(
j 8

b i 8 j 8,i j v i 8 j 8G . ~4!

III. THE VIRAL-EFFECTOR SYSTEM
IN ONE INDIVIDUAL

The properties of the above viral network clearly depen
both on the individual dynamical responses to the arrival
virions and to the manner in which the populations of virion
within individuals are connected. It is therefore useful t
consider in some detail the properties of the viral-effect
system in one individual. Indeed, it will be seen that a co
siderable part of the network behavior is explained by such
consideration of the corresponding system for one ind
vidual. The latter is simply

da

dt
5l2ma1eav, ~5!

dv
dt

5rv2gav, ~6!

and has been analyzed in detail, along with various mod
for human immunodeficiency virus-1, in Ref.@10#. Note that
the casel50 gives the classical Lokta-Volterra system@11#.
There are two critical points,P15(l/m,0) and P2
5(r /g,@mr 2lg#/er ). The eigenvalues associated withP1
are l152m and l25r 2(lg)/m. If l50, then l152m
and l25r so that the critical point is an unstable saddl
point. If lÞ0, then P1 is an unstable saddle point iflg
<rm and an asymptotically stable node iflg.rm. The ei-
genvalues associated withP2 are

l1,252
1

2r
$gl6A~gl!214r 2~gl!24mr 3%.

If l50 the eigenvalues arel152 iAmr andl25 iAmr , so
that P2 is a center. Iflg.mr , thenl1,0,l2 so thatP2 is
an unstable saddle point. Iflg,mr , then there are two dis-
tinct possibilities:~a! 4r 2/(lg)2@mr 2gl#<1. In this case,
the eigenvalues are distinct and negative, which makesP2 an
asymptotically stable node;~b! 4r 2/(lg)2@mr 2gl#.1.
The eigenvalues are then a complex conjugate pair with
negative real part. HenceP2 is an asymptotically stable spi-
ral point.

Now, if lg.mr , the pointP2 occurs at negativev and
hence is not at a biologically relevant value. There is the
just one meaningful critical pointP1 on thea axis and this is
an asymptotically stable node. Thus no matter where so
tions start in the non-negative quadrant, they end up atP1
with zero virions and witha(`)5l/m effectors. On the
other hand, whenlg,mr , there is an unstable saddle poin
on thea axis atP1 together with an equilibrium pointP2 in
the positive quadrant that is either an asymptotically stab
node or an asymptotically stable spiral point. Then whenev
the initial valuev(0) is positive, regardless of whethera(0)
is positive or zero, the system ends up atP2 . Thus in such
cases it is impossible to end up with zero virions; an equ
18-2



e

t
e
,
-

y
w

n
in
t

d
m

l

ar

th
re

e

i

te
u

n
e
f

d
c
th

v
ca
a

d

ss

on
-

-

nza

ss

EPIDEMIC SPREAD AND BIFURCATION EFFECTS IN . . . PHYSICAL REVIEW E64 041918
librium is reached withr /g effectors and (mr 2lg)/er viri-
ons. If l is relatively small, the solutions undergo damp
oscillations on their approach toP2 ; if l is large enough
solutions show no oscillatory behavior and proceed direc
to P2 . At the critical valuelg5rm where there is a chang
of stability of P1 and P2 , the two critical points coincide
both being located at~l/m, 0! with P2 emerging as the as
ymptotically stable steady state forl/m,r /g. Thus, there is
a transcritical bifurcation, with P2 emerging asl/m de-
creases belowr /g. This transcritical bifurcation plays a ke
role in understanding some of the threshold effects that
be seen below in the numerical results.

IV. NUMERICAL RESULTS FOR THE NETWORK

In the numerical work, the standard set of immune a
viral parameters are assumed to be the same for each
vidual. These values are based approximately on those
could be found for the influenza virus as explained in@1#:
l50.5, m50.05,e50.01, r 51, andg50.1. This choice is
at the bifurcation point for one individual so thatP15P2 .
We distinguish the above parameters, which are called
namical system parameters, from the following two para
eters, which are calleddemographic parametersand which
completely describe the four-dimensional arrayb i 8 j 8,i j .
These two parameters are:a, which determines the spatia
range of an infected host’s emitted virions; andb, which
measures the mean contact rate of individuals. Since a l
value ofa implies limited influence, the reciprocal ofa can
be used to quantify themobility of the individuals in the
sense of how far they travel within the population. Thus
model is more versatile than ones in which contact is
stricted to nearest neighbors only as in@12#.

A. Dynamical system parameters

There are five intrinsic dynamical system parametersl, m,
e, r, andg; and the superimposed dynamical parametersvc ,
the threshold virion level for viral growth in any host and th
starting valuev(0) of that growth@1#. The latter two param-
eters are kept fixed throughout this article. We first show
Fig. 1~a!, the maximum mean virion level

v̄max5max
t>0

1

N (
i

(
j

v i j ~ t !

across the population versus the effector source paramel
that is a measure of the tone or state of the host imm
system. These results are based on one trial for eachl with
the same initial configuration of 40 infected individuals, ra
domly chosen in a population on a square 40 by 40 lattic
a rate therefore of 2.5%. It can be seen that for values ol
greater than 0.35, the degree of viral growth and sprea
relatively very small. Asl decreases through 0.35, there o
curs a sharp increase in the overall viral level throughout
population with a rapid rise untill50.46 and further de-
creases result in a steady rise in maximum mean virion le
The threshold effect is explicable in terms of the transcriti
bifurcation in the effector-virus system for one individu
0419
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that, with the parameters used here, occurs in fact atl
50.5. For the network, the change point is slightly displace
in the direction of larger values ofl. In individuals the orbits
are qualitatively different on either side of the bifurcation
point. For largel, the steady state is with zero virions
whereas for values ofl,0.5, the final approach is to a criti-
cal point with a positive virion level.

The actual time courses of the mean virion density acro
the population in one trial,v̄(t)5(1/N)( i( jv i j (t), for vari-
ous l are shown in the three-dimensional plot of Fig. 1~b!.
One can see clearly the differences in the trajectories
either side of the bifurcation point for the viral-effector sys
tem in one individual. At the smaller values ofl there are
apparent slow and gentle oscillations inv̄(t) that may reflect

FIG. 1. ~a! The maximum mean virion level across the popula
tion in one trial as the immune parameterl varies. The remaining
parameter values are the standard set—see text. Based on influe
data, units of time are approximately 5 h and for virus particles
approximately 1011/ml of infected tissue.~b! Three-dimensional
representation of the time courses of the mean virion level acro
the population for variousl, from which are extracted the maxima
shown in Fig. 1~a!. The actual values ofl and the units are as in
Fig. 1~a!.
18-3
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the oscillations in the individual host viral levels, though th
latter are not expected to be synchronized. These results w
obtained with the remaining intrinsic dynamical system p
rametersm, e, r, andg, at fixed values as given above. Fo
different sets of values of these other parameters, the
proximate threshold value ofl is, based on the birfurcation
analysis for an individual,lc5mr /g. There is no depen-
dence one, but this parameter determines the overall mag
tude of the individual, and hence population, virion lev
through the asymptotic value ofv i j (t) at the equilibrium
point P25(r /g,@mr 2lg#/er ).

Results obtained whenr was varied from the standard
value of unity show a similar sharp threshold effect as w
found in@1# in one space dimension. This can be seen in F
2~a!, where the mean maximum virion level is plotted fo
values ofr from 0.5 to 1.5. The threshold effect is seen to
sharper than that forl, which implies a greater sensitivity to
this parameter with respect to the degree of invasion of
host population. Now, since it is possible that the number
infected hosts could be large even with a small mean ma
mum virion level, we have examined also the distribution
the final sizeXF of the epidemics that ensue for variou
values of r on either side of the critical valuer c'lg/m
51. In Fig. 2~b! we show the histograms of the total num
bers of infected individuals with the values ofr 50.90, 0.97,
1.00, and 1.02. Here, 50 trials were performed for each va
of r with randomly assigned configurations of 40 initiall
infected individuals. All other parameters were held at t
standard values. It can be seen that the nature of the di
bution ofXF is very different for these four values ofr. With
r 50.9, the distribution is fairly tightly concentrated at value
less than 100; forr 50.97 the distribution is somewhat mor
spread out and fairly uniformly concentrated at values le
than 200; then atr 51.00 a very different situation ensue
with all the mass concentrated at large values between 1
and 1600; and finally, withr 51.02, there is no mass excep
at the maximum value ofXF5N51600. The variation with
respect to changes inr is further highlighted in Fig. 2~c!.
Here the mean value ofXF is plotted againstr for many
values ofr on either side ofr c . There is a very abrupt in-
crease inE(XF) near r 51. Furthermore, it can be seen b
comparing Figs. 2~a! and 2~c! that asr increases beyond
1.02, E(XF) does not~cannot! increase even though th
maximum mean virion level is still increasing. This differ
ence arises because the terminfecteddoes not distinguish
degrees of infection. Results obtained by varying the rema
ing dynamical system parameters are not reproduced h
Rather, we proceed to an examination of the effects
changes in what we call demographic parameters as thes
more pertinent to network effects.

B. Demographic parameters

We will first ascertain the quantitative effects of chang
in the parametera, which determines the extent of the spati
spread of viruses from any infected individual, and which w
call the mobility parameter—large values ofa corresponding
to small mobility. Figure 3 shows a three-dimensional plot
the size of the epidemic, as measured by the total numbe
0419
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hosts that are touched by the disease~virus! throughout the
time course of the numerical experiment. The two indepen
dent variables in this figure area and the initial numberN0
of infected individuals in a total population ofN51600. For
each of the 49 combinations ofN0 and a, 40 trials were
performed, with a randomly chosen initial configuration of
infected hosts. The mean size of the epidemic obtaine
shows for each value ofN0 a relatively abrupt threshold asa
decreases~i.e., mobility increases!. For the values ofN0 used
here, the critical valueac lies between 0.8 and 0.85, and is a
slowly increasing function ofN0 . Thus whenN0510, we
have ac'0.8, whereas whenN0540, we haveac'0.85.
This behavior is easily accounted for by observing that a
large epidemic may occur even if the density of initially
infected individuals is small, providing the mobility of indi-
viduals and hence their domain of influence is large~small
a!.

We have also varied the demographic parameterb, which
reflects the frequencies of collision between individual hosts
As indicated by the analysis below, this parameter shows
threshold effect. This can be seen by inspection of Figs. 4~a!
and 4~b!. In the first of these figures we see a three-
dimensional plot of population mean virion level~one trial!
vs time for various values ofb. Many values were employed
nearb50.01 to examine any fine structure that might exist
in the neighborhood of that value. In each of these simula
tions, the same initial configuration of infected hosts is em
ployed. It can be seen how very differently the system be
haves asb decreases away from 0.01. At the latter value a
rapid and large upsurge occurs in the population virion leve
followed by an at first rapid, then relatively slow, decay
phase. With not very much smaller contact rates there are
few undulations in virion level but these have small and
decreasing amplitudes and it could be said that no epidem
occurs. These phenomena are further highlighted in Fig. 4~b!
where we plot two properties of the population respons
againstb, now on a linear scale. The solid curve shows the
maximum population mean virion level whereas the dash-do
curve gives the time~divided by 10! at which the maximum
was attained. An almost discontinuous change in the time t
maximum occurs just to the left ofb50.01, whereupon this
quantity declines at first rapidly then slowly as the contac
rate increases.

The final demographic parameter we have varied is th
numberN0 of initially infected individuals; the distribution
of such individuals is always assumed in the simulations t
be random across the population. Of primary interest is th
form of the probability distribution of the final size of the
epidemic so in Fig. 5~a! we show the histograms of this
random variable for various values ofN0 obtained from 50
simulations. When the initial fraction of infected individuals
is very small at 0.0625% withN0510, the distribution of
final sizes is concentrated at small values with a sma
amount of mass between about 1000 and the maximum num
ber ~recall N51600!. With a relatively small increase to
N0515, half of the mass is at very small sizes and we se
that the probability of a major outbreak is roughly 0.5. When
N0520, so that slightly more than 1% of the population is
initially infected, the probability of a significant epidemic is
18-4
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FIG. 2. ~a! The maximum mean virion level across the popu
tion in one trial as the viral growth rate parameterr ~per unit time!
varies. The remaining parameter values are those of the stan
set. Units of time are approximately 5 h and for virus particles
approximately 1011/ml of infected tissue.~b! Histograms of total
numbersXF of infected individuals for various values of the vira
growth rate parameterr ~per unit time!, so chosen to lie on eithe
side of the critical~bifurcation! value. Histograms obtained from 5
trials with random assignments of 40 initially infected individua
in a total population of 1600.~c! Mean value ofXF plotted against
r ~per unit time!. Same set up as in Fig. 2~b! but with more data
points.
0419
increased to about 0.75 and whenN0540, a major event is
certain and in fact the probability is close to one that nearly
the entire population will be infected. For a more complete
set of values ofN0 , the mean final size of the infected popu-
lation is shown plotted against this variable in Fig. 5~b!. The
increase in mean size is fairly smooth and saturating with no
threshold effect. The saturation point at which increases in
N0 cause no further increase in mean epidemic occurs a
aboutN0560. That is, if a critical mass of about 3.75% or
more of the population is infected initially, then the entire
population will end up being infected. However, it must be
borne in mind that this result is based on nonstochastic dy
namics, the only random component in the present analysi
being in the choice of the initially infected individuals. When
N0 is small, the only factor~here! that determines whether or
not a major outbreak occurs is the pattern of the geometrica
arrangement of the initially infected hosts.

C. Effects of immunization

A very important aspect of the theory of epidemics is the
effectiveness of programs of immunization. Extensive field
monitoring programs are in progress to aid in an assessme
of the results of patterns of influenza vaccination@13#. As is
well known, some such programs have been very successf
in eliminating or nearly eliminating some diseases, such a
poliomyelitis and smallpox. Within the framework of a spa-
tial model that includes both effector and viral dynamics,
there are several ways in which one could attempt to asce
tain the effects of immunization. We have chosen to repre
sents an immunized individual as one who has on a prio
occasion encountered the virus pertinent to the disease und
consideration. We assume therefore that the effector level i
an immunized host is equal to the equilibrium value that
would have been attained had the virus run its course o
growth and equilibration in that individual. With the standard
set of parameters this means that if individual~i,j! is immu-
nized, thena i j (0)5l/m510 since we assume that orbits

a-

dard

l

ls

FIG. 3. Three-dimensional representation of mean final size
E(XF), of the epidemic as the initial number of infected individuals
(N0) and the mobility parameter~a, dimensionless or per unit dis-
tance between individuals! vary. Results based on 40 trials for each
of the values ofN0 anda.
18-5
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end up atP1 . We thus chose, as in the previous simulatio
a random selection ofN0540 initially infected individuals.
We call the immunization rater and let this be the rate o
immunization of the individuals who are not initially in
fected. Thus, since immunized individuals are protect
they are excluded when we determine the infection rate
the remainingS5(N2N0)(12r) susceptible individuals
and express this as a percentage. The results for the 50 s
lations with each immunization rate are shown in Figs. 6~a!
and 6~b!. The histograms of the percentage infected for
values ofr from 0.02 to 0.4 are shown in Fig. 6~a!. The
transition from low to high immunization rate is smooth wi
nearly all the mass at unity when the immunization rate
negligible and nearly all the mass near zero when the imm
nization rate is 0.4. The mean of such distributions is plot
againstr in Fig. 6~b!. Again one sees a fairly smooth depe

FIG. 4. ~a! Mean population virion level plotted against tim
and contact rate parameterb ~per unit time!. Units of time and
virion level here and in Fig. 4~b! as in Figs. 1~a! and 1~b!. ~b!
Maximum population mean virion level~solid curve! and time~di-
vided by 10! to maximum~dash-dot curve! vs contact rate param
eterb ~per unit time!.
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dence onr, the form of the curve being almost linearly de-
creasing for values ofr from 0 to 0.2.

V. APPROXIMATIONS AND A MEAN-FIELD APPROACH

The mathematical model considered here for the sprea
and growth of a virus throughout a population of hosts dif
fers qualitatively from previous approaches. For example, i
early lattice models of epidemic spread@14# and in more
recent SIR automata network models@15#, the set of states
available at each lattice point is discrete and finite. Th
present model gives the states of the individuals as solutio
of coupled systems of differential equations. In@14# and@15#
a mean-field approach has been used in order to estima
long term behaviors of the networks, especially if there ex
ists a unique steady state. An attempt at a similar approx
mation with the epidemic network model with viral dynam-
ics described herein proceeds by assuming that ea
individual is not far from the mean for the system. That is

FIG. 5. ~a! Histograms of final size of epidemic for four values
of N0 , the initial number of infected individuals. In each case 50
trials were performed.~b! Showing the mean final size vsN0 , for a
broad range of number of initially infected individuals.
18-6
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EPIDEMIC SPREAD AND BIFURCATION EFFECTS IN . . . PHYSICAL REVIEW E64 041918
theai j andv i j can be replaced by the average valuesā andv̄
across the population. This may be expected to be appr
mately valid if the transmission of virus between members
the population is rapid. The latter occurs if the mobility o
individuals is high that implies that the parametera is close
to zero. In such a case we have approximately

dā

dt
5l2mā1eāv̄, ~7a!

dv̄
dt

5@r 1b~N21!#v̄2gāv̄, ~7b!

whereN is the total number of infected and uninfected ind
viduals. Initial behavior may be studied by replacingN by
N0 . The system~7a! and ~7b! is easily solved numerically
with a Runge-Kutta method.

FIG. 6. ~a! Histograms of percentage~of those who could be
infected! of finally infected individuals for various immunization
rates,r ~dimensionless!. ~b! Mean percentage~of those who could
be infected! of finally infected individuals plotted against immuni
zation rater ~dimensionless!.
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The threshold effect asa varies can be explained, heuris-
tically, as follows. For simplicity, consider the one-
dimensional model@1,2#, with a linear emission functiong so
that

dv i

dt
5r iv i2gv iai1b(

j
v je

2au i 2 j u. ~8!

If a is not too small, the dominant contributions to the sum
in Eq. ~8! are from the nearest neighbors so that, provide
individual i is not at the edges of the population,

dv i

dt
'r iv i2gv iai1be2a@v i 211v i 11#.

Further argument thatv is roughly continuous in the sense
that neighbors have approximately similar virion levels
leads to

dv i

dt
'@r i12be2a#v i2gv iai .

This expression makes it evident that changes in the dem
graphic parametersa andb are essentially effective changes
in the viral intrinsic growth rate parameterr. Hence, if with a
given r the system is near a bifurcation point, then change
in a and b may push the system to the other side of th
bifurcation point. Thus, such changes ina andb may lead to
similar threshold phenomena as are found whenr itself is
varied.

VI. CONCLUSIONS

A complete quantitative study of epidemics involves de
mographic components, which reflect properties of the ho
population and components that describe the dynamics of t
invading organisms that are usually either virus particles o
bacteria. Most of the previous studies have omitted the se
ond of these components, as in the family of SIR or SEIR
models. It is also necessary to include spatial distributions
hosts, which may be done via partial differential equations o
the diffusion type@16#, or as integrodifferential equations@1#
or in a discrete framework as employed in this paper. W
have considered here a two-dimensional Cartesian system
hosts whose viral populations interact with one another v
contact and transmission. The properties of the dynamic
system describing the viral-effector system are very influen
tial in determining the magnitude and time course of out
breaks of disease, and for this reason we have included
brief analysis of the virus-effector system in a single indi
vidual. Most relevant is the occurrence of a transcritical b
furcation that gives rise to threshold effects as effector an
viral parameters change. In particular, we have determin
the temporal evolution of the population virion level and the
distribution of the total numbers of infected individuals as
parameters vary on either side of the bifurcation. We hav
also examined these quantities as certain demographic p
rameters, such as contact rate, mobility, and the number
initially infected individuals change. Finally we have exam
ined how immunization rate affects the final size of the ep
8-7
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demic. We have found that the greatest benefit is obtain
when the immunization rate increases up to 20%, with d
minishing returns for further increases. In future work geo
metric effects in two and three space dimensions should
explored in detail, especially with respect to the effects
patterns and spatial rates of immunization. Of particular i
terest will be simulation with varying densities of population
representing cities, possibly as dynamical systems the
selves, towns, villages, and countryside as well as the inc
sion of age structure and mobile hosts. A mean-field stud
as alluded to in the preceding section, may also be useful
04191
d
-
-
e
f
-

-
-
,

in

order to obtain analytical results concerning the general ef
fect of viral spread without specific regard to exact spatial
configurations. Such an analysis has been carried out fo
many of the lattice models in@14# and @15#.
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