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Abstract

In order to understand the spatio-temporal structure of epidemics beyond that permitted with classical SIR (susceptible-infective-
recovered)-type models, a new mathematical model for the spread of a viral disease in a population of spatially distributed hosts is
described. The positions of the hosts are randomly generated in a rectangular habitat. Encounters between any pair of individuals
are according to a Poisson process with a mean rate that declines exponentially as the distance between them increases. The
contact rate allows the mean rates to be set at a certain number of encounters per day on average. The relevant state variables
for each individual at any time are given by the solution of a pair of coupled differential equations for the viral load and the
quantity of general immune system effectors which reduce the viral load. The parameters describing within-host viral-immune
system dynamics are generated randomly to reflect variability across a population. Transmission is assumed to depend on the
viral loads in donors and occurs with a probability py..s. The initial conditions are such that one randomly chosen individual
carries a randomly chosen amount of the virus, whereas the rest of the population is uninfected. Simulations reveal local or
whole-population responses. Whole-population disease spread may be in the form of isolated or multiple occurrences, the latter
often being approximately periodic. The mechanisms of this oscillatory behaviour are analyzed in terms of several parameters and
the distribution of critical points in the host dynamical systems. Increased contact rate, increased probability of transmission and
decreased threshold for viral transmission, decreased immune strength and increased viral growth rate all increase the probability
of multiple outbreaks and the distribution of the critical points also plays a role.
© 2007 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Viruses constitute some of the most dangerous
threats to human health. They may invade a community
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and spread rapidly amongst its members, sometimes
causing a large number of fatalities, possibly on a
recurrent basis. In the case of the influenza virus, in
1918-1919 a new strain (“Spanish”, type HIN1) swept
the globe, causing an estimated 50-100 million deaths
(de la Barrera and Reyes-Teran, 2005; Osterholm, 2005;
Strauss et al., 2006). At the present time there are several
countries, particularly in Africa, with up to 35% of their
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populations between the ages of 15 and 50 years infected
by human immunodeficiency virus (HIV). Throughout
the world, there are currently approximately 40 million
persons infected (Regoes et al., 2005) and already over
16 million deaths have been caused by this virus.

Renewed interest in the dynamical processes involved
in the spread of viruses has arisen recently due to the
threat of bioterrorist attacks, especially with such viruses
as smallpox (Henderson et al., 1999; Kaplan et al., 2002)
which was eradicated many years ago. More recently,
certain parts of the world were thrown into panic and
economic chaos by outbreaks of SARS (severe acute
respiratory syndrome) in which certain new highly con-
tagious strains of a type of corona virus were implicated.
Global spread was facilitated by airline travel, and the
number of cases doubled about every week in certain
Asian countries in the early stages of this epidemic
(Lipsitch et al., 2003; Anon., 2006b). At the time of
writing (early 2006) Western Europe is, as is the rest
of the world, in the grip of the fear that “bird flu” (avian
influenza HSN 1) will move further west and its virus will
mutate to a form which is easily transmitted from human
to human, thus raising the threat of a global pandemic
in which an estimated number of deaths as high as 180-
360 million may occur (de la Barrera and Reyes-Teran,
2005; Osterholm, 2005) with economic costs in the US
alone estimated at between 70 and 170 billion dollars.

The classically employed models in the analysis
of epidemic data are of the SIR type such as those
of Kermack-McKendrick (Bailey, 1975; Kermack and
McKendrick, 1927), in which the time variable is contin-
uous and the model is formulated as a system of ordinary
differential equations, or discrete models such as Reed-
Frost (Abbey, 1952), extended recently in Tuckwell and
Williams (2007). Examples of such systems with as
many as 10 components applied to analysis of vacci-
nation against carrier borne diseases are summarized in
Anderson and May (1991). The SIR approach, which
is based on an assumption of homogeneous mixing of
susceptible and infectious individuals, is used to make
predictions in relation to both practical and theoreti-
cal aspects of epidemics and the spread of disease (see
Diekmann and Heesterbeek (2000), Hethcote (2000),
Pollard (1973) for reviews). However, such gross com-
partmental models do not allow for the inclusion of either
the spatial distributions of the individual members of the
population nor the detailed dynamics of the infecting
particles (viruses or bacteria).

There have been several attempts to improve on
simplified models in recent years (see, for example,
the review in Isham (2005)); for example, popula-
tions have been divided into groups or patches such

that in each subgroup an SIS or SEIR (susceptible-
exposed-infective-recovered) model applies, sometimes
with migration between patches (Aparicio et al., 2000;
Arrigoni and Pugliese, 2002; Lloyd and Jansen, 2004)
and threshold conditions determined (Arino et al., 2005;
Arino and Van den Driessche, 2003; Wang and Zhao,
2004), although stochastic effects were often ignored.
Longini and coworkers (Longini and Halloran, 2005;
Patel et al., 2005; Weycker et al., 2005) have included
stochastic mechanisms and age groups in models for the
spread of influenza in communities of total population
10,000, with a view to examining the effects of various
vaccination schedules. Furthermore, large scale simula-
tions for populations of many millions (EpiSims) based
on realistic social networks (Eubank et al., 2004; Stroud
et al., 2006) have highlighted the deficiencies contained
in the homogeneous mixing assumption of the classical
models.

In addition to assigning spatial locations to the
hosts, we will incorporate statistical distributions for
the parameters describing the invading pathogen’s
dynamics, thus allowing for differences in the immune
properties of various individuals. Such factors must have
a considerable influence on the evolution of a disease. In
this context, the idea of “superspreaders” has been dis-
cussed in relationship to SARS (Lipsitch et al., 2003),
though the emphasis was on contact rates rather than host
viral-immune dynamical parameters. In previous pub-
lications (Tuckwell et al., 1998, 2000, 2001) we have
adopted this new approach to the spread of a disease
using a set of dynamical variables which describe the dis-
ease states of individuals (animals or humans) through
the size of the actual viral populations they harbor and
components of the immune system. It is recognized that
often there are many locations of viral populations in a
single host, but these are considered together. We have
considered a network of n > 1 hosts within each of
which a viral population may establish itself and such
that virus particles may be transmitted from any diseased
host to another host. The model we will consider places
emphasis on viruses as the disease-causing agent, but our
approach may be also applied to bacterial diseases.

The immune system response to viral or other infec-
tion is too complicated to attempt to model exactly in
every detail. Generally, there are agents in the immune
system which, when stimulated by antigens, give rise to
host defence mechanisms which are of several types, but
whose net action is to eliminate the virus. Active defense
mechanisms are lumped into effectors (Anderson and
May, 1991, Ch. 3; Bocharov and Romanyukha, 1994)so
that a simplified two-dimensional system of effectors
and virus may be considered in each individual. Since
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the immune responses are specific to any particular virus,
the use of a system of two differential equations to model
the evolution of the virus-effector populations is a sim-
plification but this approach is expected to contain the
essential dynamics of the biological processes without
rendering the system of equations unwieldy with a very
large parameter set. Our approach can easily incorporate
the “standard model” of viral dynamics in which there are
three components, including uninfected T-cells, infected
T-cells and virus particles (Neumann et al., 1998), or
other similar models (Wodarz et al., 2002). However, this
would require even more parameters so here we concen-
trate on the simplest comprehensive model and reserve
extensions to later work. An article using our approach
but with the inclusion of immunological memory has
recently appeared (Kostova, 2007).

Thus, when there is no interaction between hosts, a
host virus population v(¢) and a host effector population
a(t) at time ¢ evolve in a simplified picture according
to the coupled equations (Anderson and May, 1991;
Tuckwell et al., 1998; Tuckwell and Wan, 2000)

dv

I rv — yav,
where r is the intrinsic viral per capita growth rate, y the
clearance rate of virus per effector per virus, A the rate
of production of effectors (for example T-cells), u the
per capita removal (death) rate of effectors, and € deter-
mines the rate of production of effectors, in response
to infection, per unit amount of virus. In general, when
interaction between hosts is allowed via transmission of
virus particles from one to the other, we may write equa-
tions such as the following for the the viral load in the
ith host, v;(¢) at time ¢, and the effector population, a;(¢),
in the ith host

da _, n
— = A — ua+ eav,
dr H

dU,‘ "

o = fila )+ F 1Y v,
j=1

dai

E = gi(aia vi)v

where f; and g; describe the dynamics of the viral
and effector populations in the ith individual. Here the
matrix element B;;, which may depend on several fac-
tors, describes the strength of transmission from host j
to host 7, and the function F, which in the simplest cases
is linear, describes the overall effect of transmission to
a host from the rest of the population. One usually takes
Bii = 0 for all i.

In France, (and many other countries) data on
influenza, and other diseases, are obtained from a pre-
assigned group of general practitioners (500 of the

approximately 50,000 in the whole country) who record
the number of new cases of patients with “flu-like symp-
toms” and as such can be used to form a rough estimate
of the actual numbers of cases. Records of the num-
ber of recorded cases of influenza (Anon., 2006a) show
major roughly periodic outbreaks, which are probably
attributable in part to seasonal effects (Lloyd and Jansen,
2004), although the precise mechanisms involved are
still not understood. One of the questions we wish to
address in the present work concerns the nature and
causes of periodic outbreaks. We wish to enquire whether
“epidemics” may arise due to spatio-temporal stochas-
tic processes in the transmission process. For example,
if per chance a spatial cluster of diseased hosts occurs,
there may ensue a local outbreak of considerable magni-
tude which may propagate to the rest of the population.
We have already considered the effects of noise in indi-
vidual responses and noted a broad-based stochastic
resonance as the noise parameter changes in nonlin-
ear models with threshold (Tuckwell et al., 2000). We
wish to investigate here and in subsequent studies the
factors, both demographic and dynamical, which influ-
ence the frequency, magnitude and duration of various
outbreaks.

2. The mathematical model

The model employed here differs from those
employed previously in several aspects. A stochastic rep-
resentation is employed for the locations of members of
the host population over a two-dimensional habitat, .A.
Members have “home” locations which are interpreted
as their average positions, from which they may make
excursions and encounter other members of the com-
munity. The coordinates (X;, ¥;),i = 1,2, ..., n, of the
“home” locations of the n individuals comprizing the
population are assumed to be independent and random
over A. (We adopt the notation that random variables are
in capital letters, whereas the values they assume are in
lower case. However, not all capitalized variables are ran-
dom.) In the following analysis, distances may be taken
to be in kilometers and we assume that A is a rectangle
with sides of length a and b. However, the actual physical
dimensions are secondary to the rates of contact between
individuals. For the first studies, X; and Y; are taken to be
uniformly distributed on (0, @) and (0, b), respectively.
See Fig. 1 for a typical random spatial distribution with
n = 100 individuals anda = b = 1.

Encounters between individuals are assumed to occur
at the event times of @ Poisson processes N, i, j =
L,...,n;j>i. The Poisson process N;j = {N;j(1),t >
0} governing encounters between individuals i and j is
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Fig. 1. An example of the randomly chosen coordinates (X;, ¥;) in
the unit square representing the positions of n = 100 individuals who
are potential hosts for the virus. Here x (blue) denotes an initially
uninfected individual whereas the (red) circle marks arandomly chosen
initially infected host. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of the
article.)

assumed to have rate parameter given by

)"ij = Aexp [—O{dij], (1)

where d;; = \/(Xi — Xj)? 4+ (Y; — Y;)? is the distance
between the ith and jth home locations. The parameter
A is chosen to be proportional to the number of meet-
ings per unit time. No intra-day variations in interaction
rate are incorporated. Poisson processes are the natu-
ral choice for random events such as chance meetings
(Tuckwell, 1995).

The stochastic differential equations governing the
evolution of the viral and effector populations in the ith
individual are then given by

dv; " dN;

o = FAL VDY Ti— 5 )
j=1

dtl = g(A;, V). 3)

Here T); describes the strength of transmission from the
jthto the ith individual if a meeting occurs between them.

The term % indicates that when an event occurs in the
Poisson process N j; (signifying a meeting has occurred
between individuals j and i) then, since Nj; jumps by
unity, the derivative of V; has a delta-function at the time
of the meeting so that the viral load V; jumps by the
amount of virus transmitted from individual j to individ-
ual i.

For simplicity in our first investigations we assume
that the transmitted amount of virus from individual j to
i is given by

T = BG(V)), 4)

independent of the recipient, where §is a constant and G
is a given function. This could also be made a function of
the dynamical states of donor and recipient but in order
to limit the number of parameters we have chosen § to be
same for all pairs of individuals. The form of G chosen in
the simulations reported below is that of a step function

1, Vj = Verits

G(Vj) = H(Vj — verit) = (4A)

0, Vj < Ucrit,

so that an infected host is capable of transmitting virus
particles only if his viral load is greater than the criti-
cal level vit. However, in the simulations, transmission
only occurs with probability pyans. This means that if
an infected host encounters another host, which occurs
when an event happens in the Poisson process governing
their meetings, then if the infected host’s level of virus is
above the threshold v for transmission, then virus will
be transmitted with probability pians. The transmission
rate can also be endowed with an upper limit such as
provided by a logistic function of V;, but here in the first
instance for simplicity we assume (4A) is valid.

For our first investigations of this mathematical
model, as explained in Section 1, the functions f and
g describing the intra-host dynamics of the effector-
viral populations, are chosen as in our previous articles
(Anderson and May, 1991; Tuckwell et al., 1998) so that
in the absence of interactions:

dvi

O =g(A;, Vi) =r1iVi — viAi Vi, )
dA;
T - fA, Vi) =X — A + €A V. (6)

In simulations we often modify (5) slightly by making
the growth term logistic to prevent the occurrence of
unrealistically large viral loads—see below.

2.1. Distribution of host viral dynamical parameters

The system (5) and (6) has equilibria at

)\‘.
P = (0) : )
Mi

. e — ks
Py = <rl Mitri — Vi z) , (8)

9
Vi €T

or generically at Py and P;.
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Table 1

Distributions of viral and host immune system dynamical parameters

Parameters Meaning Mean Standard
deviation

A Rate of production of effectors 0.5 0.05

i Clearance rate of effectors 0.05 0.005

ri Viral growth rate 1 0.1

Vi Viral removal rate 0.1 0.01

€ Virus-induced rate of production ~ 0.01  0.001

of effectors

Units are given in the text.

In order to take into account variability across the
host population, the parameters r;, y;, A;, i; and €; are
randomly distributed. All these parameters are nonneg-
ative but in accordance with the most natural choice
are given normal distributions (central limit theorem,
Tuckwell, 1995) with means and standard deviations
such that negative values have practically zero chance
to occur—and in fact never did occur in any of the
trials we have performed. The standard values of the
means and standard deviations of these five parameters
are shown in Table 1, their units being as follows: A;,
effectors days_l; Wi, days_l; i, days_l; Vi, effectors™!
days~!; and ¢;, virions~'days~!. These values are based
in part on (Anderson and May, 1991) and on our pre-
vious work (Tuckwell et al., 1998, 2000, 2001) and
are such that when they assume their mean values, the
solutions of (5) and (6) in response to an initial small
increase in viral load, are such that the viral load rises
to a maximum after a few days and then declines to
negligible values after about 10 days, while the effec-
tor level rises and remains at a higher level (immune
memory); that is there are no oscillations. The actual
magnitudes of the maximum viral loads are known in
some cases where this is the form of the viral popu-
lation growth curve, e.g. influenza in man (Bocharov
and Romanyukha, 1994) and lymphocytic choriomenin-
gitis virus in mice (Bocharov, 1998). In these references
very complicated models (10 to over 40 differential equa-
tions) for viral and immune system dynamics have been
given but we have employed a reduced system which
captures the essence of the very large systems. The
key variables (viral load and effector numbers) can be
easily rescaled if required to actual biological values
(Bocharov, 1998; Bocharov and Romanyukha, 1994;
Neumann et al., 1998; Sidorenko, 2005). For example,
viral densities in influenza are of order 10% virus particles
per millilitre of infected tissue (Sidorenko, 2005) and
in lymphocytic choriomeningitis virus in mice, between
107 and 10° per millilitre (Bocharov, 1998). In Fig.
2 is shown an example of the randomly distributed
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Fig. 2. Showing the positions of the critical points in the (a,v)-plane
according to random distributions for each of the five parameters given
in Table 1. In the top part is shown the distribution for the P;’s for
each individual in the population and in the bottom part that for the
P>’s. Note that some of the latter are at unphysical values as they have
negative values of the viral load — see Tuckwell and Wan (2000) for a
detailed discussion — but this has no effect as the dynamical variables
are constrained to have nonnegative values. Here the population is
n = 100.

positions of the critical points P; and P in the (a,v)-
plane.

In Fig. 3 are shown histograms of the numbers of
critical points of various types associated with each indi-
vidual in the population, which in this example has a
size of 100. There are two possibilities for Pj: unsta-
ble saddle point or stable node whereas for P, there are
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Fig. 3. For the critical points whose coordinates were given in the
previous figure we here show the numbers of each kind of critical
point. Upper histogram for P; and lower histogram for P,.
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three possibilities: unstable saddle, stable node and sta-
ble spiral point. Note that if A;y; > p;r; the point P, ;
occurs at negative v and hence is not at a biologically
relevant value. There is then just one meaningful critical
point P; on the a-axis and this is an asymptotically sta-
ble node—see Tuckwell and Wan (2000) for a detailed
discussion.

3. Implementation of the model

In Table 2 are summarized the parameters which com-
plement those of Table 1. Some of the viral dynamical
parameters appear here that are not randomly distributed
as are those in Table 1.

It is remarked that many persons infected with, for
example, influenza virus show no symptoms but may
still transmit the disease (Regoes et al., 2005). This is
incorporated in our model as vt < vs. Some remaining
demographic parameters are given in Table 3.

The coordinates (X;, Y;) of the n individuals in the
area of interest are determined using a random number
generator. This enables the distance d;; between indi-
vidual i and j to be determined. An initial distribution of
infected individuals is chosen across the population, usu-
ally consisting of just one infected individual as depicted
in Fig. 1. This individual is chosen randomly from the
population and so has a randomly chosen set of viral
dynamical parameters as in Table 1. The value of the
viral load in the initially infected individual is chosen
from a uniform distribution on (0, vinjt), where, based
on (Tuckwell et al., 1998), the value of vj,;; was usually

Table 2

Standard values of the parameters

Parameter Value Remark

A 2 Basic rate of meetings per day

o In 100 Decay of contact rate in space

B 1 Transmitted viral load

Ptrans 0.05-0.7 Probability of transmission of virus
on contact

Verit 3 Threshold viral load required for
viral transmission

Umax 30 Maximum attainable viral load

Vs 5 Viral load at which symptoms of
illness occur

Table 3

Demographic parameters

Parameter Value Remark

a 1 Length of rectangular habitat

b 1 Breadth of rectangular habitat

n 20-100 Population size or density

set at 3. The viral load in the initially infected individual
first increases according to the deterministic law (as in
Eq. (5)) in the absence of transmissions of virus from
other infected individuals. All individuals in the popu-
lation initially have zero effectors: A;(0) = O for all i.
The rates A;;, where i = 1,...,n,and j=1,...,n, of
meetings for each pair of individuals can be determined
using Eq. (1).

Suppose the time interval on which the spread and
evolution of the virus is to be observed is (0, 7] with a
given initial condition and with a given time step Af. At
each time step, a meetings matrix M of order n x n is
then generated where M;; (which depends on the time
step) is such that

Iy 1, if individuali meets individual j,
v 0, otherwise.
The value of M;; is set at unity if a uniform on (0, 1)
random variable is less than A;;At, in accordance with
the Poisson law. Note that M is a symmetric matrix
(M;j = M ;) because in this model, if individual i meets
individual j, then individual j meets individual i. Further-
more, care is taken to ensure A;;Af < 1.
At each time step the ith individual’s effector popu-
lation A; is first updated according to

Ai(t + Ar)
A1), if individual i has never
= < Ai(f) + (A; — njAi(r) been infected,
+€;A;(H)Vi(t))At, otherwise.

It is then ascertained if individual i, fori=1,...,n,
had any encounters at all with other individuals. If there
were no meetings, so that » j M;; = 0, then V; evolves
according to

Vit + At)

Vi)

max

= Vi(t) + [Vivi(t) <1 - ) - ViAi(t)Vi(t)] At.

)

Here the parameter vp,x (constant, non-random) is
employed in the growth equation for host viral popu-
lations in the absence of viral transmission such that
growth is logistic (Bocharov, 1998; Tuckwell et al.,
1998) according to the generic equation

) \%
V=rv <1—> — JAV. (10)
Umax

If there is at least one meeting, then the viral load V;(7)
in each encountered individual j, j =1,...,n, j #i,1is
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examined to see if it exceeded the critical value vcit. If
it did then transmission occurs to individual i with prob-
ability pyans With V; being increased by the amount g if
transmission was successful. In summary the contribu-
tion from individual j to i if they meet is

Tjt) = Vit + A — Vi)
= BHU(O, 1) — Ptrans)H(Vj(I) — Verit), (11)

where U(0, 1) is arandom variable uniformly distributed
on the interval (0, 1), and T;;(¢#) = O for all i.

Thus if individual i encounters anyone he receives the
total random viral dose

Tt =) Ta.

Jj=1

However, it is possible that 7;(z) is zero because of the
step functions in Eq. (11) in which case V;(¢) changes
according to Eq. (9).

4. Results

Broadly speaking, simulations of the above model
resulted in one of the following outcomes: response
here means that individuals do become infected by any
amount of the virus:

(a) asmall local response which dies away;

(b) aresponse which involves alarge fraction, and possi-
bly all, of the population where individuals become
sick (v > vs) once only, with viral levels returning
thereafter to almost zero;

(c) as in (b) except that viral levels remain elevated in
certain individuals at lower than symptomatic (v <
vg) or infectious (v < vgrit) levels;

(d) arepetitive outbreak of disease in which a large frac-
tion, and possibly all, of the population becomes ill
on an approximately periodic basis.

An example of a case (d)-type response where there
are almost-periodic outbreaks is shown in Fig. 4, where
the mean viral load (in scaled units) across the population
is plotted against time and is seen to have approxi-
mately periodic peaks. For these results we have used
the standard parameters with n = 100 and pyans = 0.2.
The spatial distribution of hosts and the distributions
of the critical points are those shown in Figs. 1-3.
Recall that only one member of the population is ini-
tially infected and that the individual responses are not
oscillatory when the viral dynamical parameters take
their standard mean values. However, due to the dis-
tribution of parameters several individuals may have

30

25| 1
20} 1

15} 1

10f .
5 H 4
0

100 300 350

1 50 200 250 400
TIME IN DAYS
Fig. 4. The mean viral load vs. time in an example where almost peri-
odic outbreaks occur. The population size is n = 100 and pyrans = 0.2.
The population and critical point distributions are given in Figs. 1-3.
For remaining parameters, see text.

MEAN POPULATION VIRAL LOAD

recurrent outbreaks of diminishing magnitude. How-
ever, it was found that recurrent outbreaks in individuals
were by themselves not intrinsically sufficient to cause
another major outbreak because when the meetings
between individuals were stopped at 50 days, there was
just the initial outbreak even though all parameters and
the spatial distribution were unchanged. In Fig. 5 is
shown the temporal evolution of the viral loads in two
of the individual hosts for the first outbreak in Fig.
4. The blue curve, starting at v > 0 at t = 0, depicts

30

INDIVIDUAL VIRAL LOADS

0 5 10 15 20 25 30
TIME IN DAYS

Fig. 5. Viral loads of two individuals vs. time corresponding to the

first outbreak shown in the previous figure. The blue curve is for the

initially infected individual. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version
of the article.)
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the viral load for the initially infected individual, the
(other) red curve being for an individual who became
infected about 4-5 days later. With a smaller value of
Pirans = 0.1 and all other parameters the same, with no
cut-off of meetings after 50 days, there was only one
outbreak.

In order to consider the influence of various parame-
ters, we may classify them into three main types:

(i) those which determine contact rates between hosts,

being n, a, b, A and «;

(ii) those which govern the processes of viral transmis-
sion, which are pans, 8 and ver; and

(ii1) those which determine the within-host viral-
immune system dynamics, being the means and
variances of the parameters A;, w;, rj, ¥; and €;,
i=1,...,n.

We do not have space to report the dependence of the
course of disease on all these in detail, so we discuss vari-
ations in a few representative ones. Our simulations were
done with software which does not permit the efficient
study of very large populations. However we expect that
similar principles will hold in the investigations reported
here as in larger populations. In later articles we will
carry out further investigations of the parameter depen-
dence and incorporate larger population sizes. In all the
following results there is assumed to be just one individ-
ual at + = 0 who carries a small viral load where both
the individual and the viral load are assigned randomly
(see Section 3).

4.1. Effect of changes in population density

In order to obtain an idea of the effects of population
density on the multiplicity of outbreaks, 10 trials were
first performed with pyans = 0.5andn = 30,n = 40 and
n = 50. Note that since the standard area is one unit, n
gives the population density. In these runs, the values of
the host dynamical parameters (Table 1) were the same
(after being randomly generated) and the spatial distri-
butions of the individuals were also the same (after being
randomly generated). It was found that there was some
variability in the response type, but often the result was
stereotypical. For example, with n = 30, in 8 trials of 10,
there were 6 outbreaks in the period r < 250 and in 2 tri-
als there were 5 outbreaks in the same time period. If the
viral dynamical parameters in Table 1 are fixed and the
spatial distribution is fixed, the only remaining sources
of variability are in the meeting times and the success
or failure of transmission of the virus in an encounter
with an infected individual. For the 10 trials withn = 50,

however, there were in every trial almost regular periodic
outbreaks.

Including randomly distributed dynamical parame-
ters and random spatial configurations should give a
clearer picture of the stochastic nature of the responses.
Hence 20 such trials were performed withn = 20, 25, 30
and 35 for 0 <t <400 days. The number of trials
was here relatively small because with the software
employed, such runs were very time consuming. In
the bar diagrams of Fig. 6 we show distributions,
from these simulations, of the multiplicities of the out-
breaks for these various values of n. It can be seen
that as n increases, the general trend is for the dis-
tribution to move to the right where the multiplicity
increases. When n = 20 only 10greater than 2, whereas
when n = 35 the percentage is 70 and when n = 50 it
is 100%.

The hypothesis of an increase in the tendency to
multiple outbreaks with increased population density is
reinforced by the results given in Fig. 7. Here is plotted
the number of times (in 20 trials) that only a single out-
break occurred versus population density fromn = 20to
n = 60, with 20 trials for each value of n. These results
include the four first column results of Fig. 6. When
n = 20 there were 15 occurrences of just one outbreak,
for n = 25 just 11, for n = 30 there were 8, for n = 35
there were 3 and for n = 60, only one in 20 trials gave
rise to a single outbreak.

The fact that increasing n leads to a greater chance
of multiple outbreaks can be traced to the effect of n
on the rates of meetings for any individual which for
fixed values of all other parameters are very close to
proportional to n. This assertion was verified by per-
forming several simulations with only variations in the
parameter A—see Section 4.3 for related results. In
order to understand which other factors might be pri-
marily responsible for the occurrence of a multiplicity
of outbreaks, we examined the nature of the critical
points which are of the kind given in the scheme of
Fig. 3. If one or more members of the population
have, for the critical point P», asymptotically stable spi-
ral points as opposed to nodes, one might expect that
there is a chance that the resulting individual oscilla-
tory activity could manifest itself in multiple outbreaks
across the entire population. That is, recurrent epi-
demics might arise just because one or a few individuals
have immune system parameters which lead to their
having recurrent illness, which enables them to trans-
mit virus particles to to others. However, it was found
that recurrent outbreaks may occur in the population
when there are just a few spiral P»’s or if there are
many.
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Fig. 6. Bar diagrams showing the frequencies of various numbers of outbreaks of all magnitudes for different population sizes which are marked
(by N) on each plot. These are based on 20 trials using the standard parameter set.

4.2. Effects of varying parameters which affect
transmission

We now consider the effects of varying the following
two parameters:

(a) the probability pians of a successful transmission of
virus from a diseased individual to a host he or she
encounters, and,

20 T T T T T T T

18} 1
16} 1
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10
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OCCURRENCES OF SINGLE OUTBREAKS
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Fig. 7. Number of single outbreaks vs. population density, N.

(b) verit, the value of the viral load required to make a
host infectious; that is, capable of transmitting virus
to another individual he encounters.

4.2.1. Changes in pyans

In order to obtain more insight into the stochastic
mechanisms involved in disease spread, 20 runs were
performed with n = 30 and several values of pyans for
each of two sets of host viral dynamical parameters (cho-
sen randomly from the distributions with means and
variances given in Table 1) and different spatial distri-
butions. We will refer to these two lots of parameter
sets and spatial configurations as sets 1 and 2. All other
parameters took their standard values in Tables 2 and 3.
For the various values of pyans, the proportion of trials
was recorded in which multiple periodic outbreaks, of
the kind shown in Fig. 4, occurred. The proportion of
trials thus obtained gives an estimate of the probabil-
ity of multiple periodic outbreaks. The results are given
in Table 4 and indicate the importance of the param-
eter puans in influencing whether there will just be a
single, possibly major, outbreak, followed by almost no
further disease processes, or a sequence of several nearly
periodic outbreaks.

For the first set of results, when pyans = 0.2 or 0.25,
the chance of recurrent periodic outbreaks is negligible.
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Table 4

Results for pyans

Ptrans Set 1 Set 2
0.20 0 0
0.25 0 0
0.30 0.50 0
0.40 0.90 0
0.45 0.95 0.45
0.50 1.00 0.85
0.60 1.00 03
0.70 1.00 1.00

Proportion of multiple periodic outbreaks.

However, when pyans is increased to 0.3, 50% of trials
resulted in recurrent outbreaks, presumably because a
new outbreak is easier to trigger with an increased prob-
ability of transmission of the virus from infected to other
individuals. With pyans = 0.4, 90% of trials gave recur-
rent outbreaks and when pyans was 0.5, all of the trials
performed resulted in sustained oscillatory responses, of
the kind depicted in Fig. 4. For the second set of results
periodic outbreaks were harder to elicit, as pyans had to
be greater than 0.4 for them to occur at all. Examina-
tion of the spatial distributions for the two sets of results
showed that for the first set, the initially infected individ-
ual was near the center of mass of the population whereas
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for the second set the initially infected individual was
isolated at the periphery. Since the greater the distance
between two individuals the smaller their rate of meeting,
the position of the initially infected individual may have
influenced the probability of multiple periodic outbreaks.
(See Sidorenko (2005) for a discussion of related edge
effects on the size and duration of epidemics.) It seems
from these few results that stochastic mechanisms play a
role in determining whether an epidemic consists of one
major outbreak or whether there will be oscillations of
the viral load across the population.

To illustrate the different kinds of results, Fig. 8 shows
the time-courses for the number of sick individuals,
defined here as those having a viral load greater than
vg (see Table 2) in the population for several values of
the transmission probability, pians, which are marked on
the figure. Here the parameters and all initial conditions,
including the spatial distribution are identical to those
employed for set 1 results in Table 4.

4.2.2. Changes in vt

We also investigated the effects of changing the
parameter vgi—see Section 2. With n = 30, 20 tri-
als were performed, with randomly chosen dynamical
parameters and random spatial configurations. The aver-
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Fig. 8. Plots of the numbers of individuals classified as sick (with v > vg) vs. time for various values of pians, (denoted by P in the figure) the
probability of transmission of the virus. Here n = 30. For parameter values, see text.
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age numbers of outbreaks with v values of 2, 4, 6 and
8 were 2.6, 1.7, 1.1 and 0.9, respectively. This suggests
that higher values of v, tend to make multiple outbreaks
less likely. In fact, for a given set of parameters, including
the whole spatial distribution, there is a critical value of
Verit above which multiple outbreaks tend not to occur.

4.3. Effects of changes in within-host dynamical
parameters

The parameters which govern the within-host dynam-
ics are the means and variances of the A;, u;, r;, y; and
€i,i =1,...,n. To ascertain the effects of greater host
immunity and of more aggressive virus, we describe
results for the effects of varying the means of two of these
five parameters; firstly, A;, which describes the strength
of effector production and second, r;, which describes
the growth rates of the virus within the hosts. (Analysis
given in Tuckwell and Wan (2000) as well as simula-
tion shows that for several parameters their ratio mainly
determines the behaviour of solutions, so increases in
one has a similar effect to decreases in the another.)

4.3.1. The parameters A;

Simulations were performed to see the effects of
changes in the mean of A;, the host intrinsic effector
production rates. At the same time contact rates A were
varied to see the interplay between these parameters. The
standard value of the mean E[A;] = 0.5 and the values
0.4 and 0.5 were also employed. As the mean E[;]
varies, the nature of the distribution of critical points
changes, with larger E[X;] producing less spiral points.
The other parameters in these simulations were standard,
with n = 20 and pgans = 0.5. The results based on 20
trials are given in Table 5.

It can be seen that when the value of E[A;] is small,
which indicates poor immune status, multiple outbreaks
(affecting the whole population) are relatively easy to
elicit. In all cases the trend is clear, that larger val-

Table 5

Effect of changing E[A;]

Mean of A; Contact rate parameter A % multiple outbreaks
0.4 3 100
0.4 2 100
0.4 0.5 0
0.5 4 80
0.5 3 50
0.5 2 20
0.6 5 50
0.6 4 10
0.6 3 5
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Fig. 9. The effects of changing the mean value of the viral growth rate
parameter r;. Here the population size is n = 50. The values of the
mean of r; are 0.5 (top), 1.0 (middle) and 2.0 (bottom).

ues of A promote multiple outbreaks. Even when the
immune status is strong with E[A;] = 0.6, multiple out-
breaks occurred if the contact rate was high enough. Note
that the occurrence or not of multiple outbreaks was not
strongly influenced by the number of spiral points for
P>, indicating a stochastic mechanism.

4.3.2. The viral growth rates, r;

Simulations were performed with pyans = 0.5 for a
population of n = 50 in which the mean of the viral
growth rates r; varied from its standard value of 1 to
half this value and double this value. All other param-
eters had their standard values and several runs were
performed for 0 < ¢ < 600 days. The results for each
trial were similar, probably because the distributions of
critical points were similar. Typical results are shown
in Fig. 9. When the mean E[r;] = 0.5, there is only
one initial outbreak, affecting the whole population (top
graph). In the case E[r;] = 1, (the standard value) there
are several outbreaks with an interval of a few 100 days
between them (middle graph). However, when the mean
of r; is 2, as in the bottom plot, the frequency of out-
breaks increases greatly. The parameter E[r;] clearly has
a strong influence on the temporal evolution of the dis-
ease spread. Mutation to a more virulent form of virus
could thus lead to a greater multiplicity of outbreaks.

5. Concluding remarks

The model considered in this article captures some of
the features of natural populations in that individuals
(human or animals), who are potential hosts for dis-
ease producing agents such as bacteria or virus particles,
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are assigned spatial locations and meet other individu-
als, who may be infected, at random times. It has been
assumed that each individual has a home base and his or
her interactions with other individuals occur randomly at
the event times in Poisson processes whose rates depend
on the distances between the home bases. The manner in
which locations are chosen could make the model appro-
priate for certain plant populations. Small-world network
effects (Weycker et al., 2005) which may occur in human
populations are captured to some degree because any
individual may encounter any other individual with a
non-zero probability no matter how great the distance
between them. As a general rule however, in human and
especially animal populations, encounters are on average
more likely between individuals the smaller the distance
between them, as described by the present model.

The density of the population can be varied and also
the contact rates between the individuals. Disease parti-
cles are transmitted stochastically from infected to other
individuals. The novel feature of our model is that it
includes dynamical systems for within-host disease par-
ticles (viruses or bacteria) and the host immune response.
This has been done in a simple way by using a system of
two differential equations which captures the elements
of effector-viral or effector-bacterial dynamics. With the
use of such models one may distinguish more accu-
rately the spread of various diseases by using appropriate
parameters. For example, models for HIV within-host
dyamics are well documented (Neumann et al., 1998)
and could be used in place of the simple model ((5) and
(6)) and could also be made stochastic (Le Corfec and
Tuckwell, 1998; Merrill, 2005).

As elaborated on in Section 4, the parameters may
be classified into three main types: first, those which
determine contact rate; second, those which govern the
processes of transmission; and those which determine
the within-host disease dynamics being the means and
variances of the A;, w;, ri, v; and ¢;,i = 1,...,n. The
number of parameters is thus very large. There are 10
fixed parameters given in Tables 2 and 3, @ rates
of contact, and 10n viral-immune system dynamical
parameters—the latter being generated from the 5 means
and standard deviations of each of the parameters in
Table 1 for each member of the population. Thus each
host has an assigned set of parameters so that differ-
ent hosts will respond to disease agents in a different
way. With such a large number of diverse parameters,
it is not so simple to find the classically defined basic
reproductive ratio Ry (Anderson and May, 1991; Lloyd
and Jansen, 2004 ) although a more detailed investigation
could yield bounds on an estimate as in the large urban
simulations (Eubank et al., 2004; Stroud et al., 2006).

We focussed on the occurrence or not of multiple
approximately periodic outbreaks and investigated one
or more of each class of parameter which seemed to play
a role in determining whether single or multiple out-
breaks would occur. For the simulations we performed,
values of pyans below 0.3 never gave multiple outbreaks
(see Table 4) whereas values equal to or greater than
0.5 could give multiple outbreaks. The parameter vyt
was also investigated and found to exert considerable
control over the multiplicity of outbreaks with a well-
defined threshold effect. Another property investigated
was population density, and since the area of habitat was
fixed, it was sufficient to vary the population size n. The
main influence of an increase in population density is, if
the parameters A and « are left unchanged, to increase
the contact rates between hosts. It was found that the
probability of a single outbreak, as opposed to multi-
ple outbreaks, dropped rapidly as the population density
increased. Similarly, if the parameter A increased there
was an increase in the likelihood of a multiple outbreak.
The natures of the population critical points was found
to have some influence, but contact rates seemed to be
the more important of these factors: if there were a few
or many P, spiral points multiple outbreaks occurred if
A was large enough.

Two of the within-host dynamical parameters were
varied and found to have an important influence. First
the mean of the intrinsic effector production rate, E[A;]
was varied to just above and below its standard value.
Larger E[A;] made it harder, but not impossible if A
increased, to elicit multiple outbreaks, reflecting stronger
immune properties of the host population. Smaller val-
ues increased the likelihood of recurring illness across
the population. Changes in the mean of r;, the within-
host viral production rate had the opposite effects to the
corresponding changes in the mean of A;. In general, the
the mean values of the within-host dynamical systems
parameters have been based on a restricted set of val-
ues, so it remains to be seen what epidemic behaviour
other sets of values will induce. In general such parame-
ters, or their analogues in more detailed models, will be
disease-specific. This could accommodate the fact that
in some diseases, such as hepatitis C and chickenpox,
virus particles persist within hosts for many years. The
set of values concentrated on in this paper were based on
our earlier work, where non-oscillatory solutions of the
differential equations were sought to avoid recurrence of
disease by virtue of individual dynamics as opposed to
interactive effects.

There are many potentially interesting extensions
of the preliminary investigation of the model we have
reported here. The path of the spread of infection could
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be followed graphically and with larger populations the
existence of wave-like phenomena could thus be exam-
ined. One could examine the effects of randomly arriving
disease-bearing immigrants on a population that has set-
tled to an equilibrium situation with sub-threshold viral
levels, described as a type (c) response at the beginning of
Section 4. In addition, analysis could be performed on
the effects of vaccination, quarantine and host deaths.
Mutation of the virus to a more contagious form could
also be studied by making the parameters pirans and the
within host viral dynamical parameters take on new val-
ues for the members of the population who host the new
mutant.
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