
The geographical spread of in¯uenza

Eric Bonabeau1, Laurent Toubiana2 and Antoine Flahault2

1Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
2INSERM-U444, B3E-ISARS, CHUSaint-Antoine, 27 rue Chaligny, 75012 Paris, France

How infectious diseases spread in space within one cycle of an epidemic is an important question that has
received considerable theoretical attention. There are, however, few empirical studies to support theore-
tical approaches, because data are scarce. Weekly reports obtained since 1984 from a network of general
practitioners spanning the entire French territory allows the analysis of the spatio-temporal dynamics of
in£uenza over a ¢ne spatial scale. This analysis indicates that di¡usion over long distances, possibly due
to global transportation systems, is so quick that homogeneous global mixing occurs before the epidemic
builds up within infected patches. A simple model in which the total number of cases is given by the
empirical time-series and cases are randomly assigned to patches according to the population weight of
the patches exhibits the same spatio-temporal properties as real epidemic cycles: homogeneous mixing
models constitute appropriate descriptions, except in the vicinity of the epidemic's peak, where
geographic heterogeneities play a role.
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1. INTRODUCTION

Models developed by epidemiologists are aimed at
predicting epidemics or evaluating the e¤ciency of vacci-
nation (Kermack & McKendrick 1927; May & Anderson
1984; Anderson & May 1991; Anderson 1994; Hethcote
1978; Hethcote & Van Ark 1986; Mollison 1977; Grenfell
et al. 1995; Post et al. 1983). A number of models incorpo-
rate real data, some among these include heterogeneities
in the form of age structure or interaction networks
(Anderson 1994; Hethcote 1978; Post et al. 1983; Hethcote
& Van Ark 1986; Mollison 1977; Grenfell et al. 1995;
Woolhouse et al. 1997; Bolker & Grenfell 1993, 1996;
Ferguson et al. 1996), but few deal with the spatial compo-
nent of epidemics (Baroyan et al. 1971; Cli¡ 1995; Cli¡ et
al. 1986; Murray & Cli¡ 1975; Noble 1974; Cli¡ &
Haggett 1988) despite the importance of understanding
the geographical spread of infectious diseases. This can be
understood as it is hard to ¢nd long and reliable epidemic
time-series, and virtually impossible to ¢nd good spatio-
temporal data with ¢ne-grained sampling scales. A
remarkable data set in that respect are the UK measles
incidence case records, which span 40 years at more than
2000 locations, with up to several million cases reported
per year. This data set has been extensively studied and
remarkable results have been found regarding the often
subtle but important e¡ects of space (Murray & Cli¡
1975; Grenfell et al. 1995; Bolker & Grenfell 1996).

The existence of a network of general practitioners
(GPs) in France (Valleron et al. 1986), evenly distributed
over the French territory since 1984, allowed us to obtain
good-quality data (detailed reports exist for detected
cases) on a weekly basis on a relatively small spatial scale
(20 km). The number of GPs involved in the sentinel
network has increased signi¢cantly since the network was
launched, now representing 1% of all French GPs.

Consequently, the size of the in£uenza data set, which is
the focus of the present study, reaches several thousand
reports within an epidemic cycle of about 15 weeks.
Results presented in this paper are given for all epidemic
cycles between 1987 and 1995. One question of particular
interest is whether or not geographical space, including
heterogeneities in population distribution, is relevant to
the spread of the epidemic within a cycle. If space is not
relevant, global mixing models give accurate descriptions
of the epidemic process. If, on the other hand, space does
play a role, spatial models incorporating local mixing and
locally density-dependent dynamics, may be more appro-
priate. In terms of immunization, the two descriptions
have di¡erent consequences (May & Anderson 1984;
Anderson & May 1991; Bolker & Grenfell 1996) (uniform
versus di¡erential immunization). There has been some
evidence in the past that space is indeed relevant to the
spread of epidemics, and that epidemics spread with
spatial waves from an initial epidemic centre (Cli¡ 1995;
Cli¡ et al. 1986; Murray & Cli¡ 1975; Noble 1974; Cli¡ &
Haggett 1988). There is also some evidence that the local
dynamics of an epidemic, characterized for example by
its force of infection or basic reproduction number,
depend on heterogeneities in population density (May &
Anderson 1984; Anderson & May 1991), although the
topic remains somewhat controversial and the depen-
dence may be complex. Transportation systems have
changed in the last 30 years, not only promoting
exchanges among countries, but also within countries.
Although global exchanges did exist 30 years ago (for
example, retrospective modelling of the 1968 Hong Kong
pandemic suggested that the virus had di¡used rapidly,
taking less than two years, through a worldwide network
of interconnected cities (Rvachev & Longini 1985)), they
may have been seriously ampli¢ed to the point where the
time-scale of global mixing is so short that it dominates
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over local dynamics. This also points to the crucial
problem of the speed at which a vaccine should be devel-
oped in response to a new pandemic.

2. CORRELATION ANALYSIS

Figure 1 shows the weekly time-series of the total
number of cases reported by the GP network over the
entire territory between 1984 and 1995. The ¢rst four
cycles that can be seen in ¢gure 1 will not be used in our
study because of the imperfect coverage of the French
territory by the network at that time. In order to study
the in£uence of space on the spread of the epidemic
within each period of the oscillatory incidence pattern,
spatial correlations have been computed. Spatial data are
binned in square patches of linear size s km, hereafter
called s-patches. Let Ns(r,t) be the number of cases
reported during week t in the s-patch, centred on location
r. Let ns(r,t)�Ns(r,t)/Ps(r) denote the `normalized' version
of Ns(r,t), where Ps(r) is the total population in the s-patch
centred around r: ns(r,t) represents the per capita inci-
dence data. Figure 2 shows the equal-time density^
density autocorrelation function Cs(h,t) of ns(r,t) at the
peaks of the last eight epidemic cycles observed in ¢gure
1. Cs(h,t) is de¢ned by

Cs(h,t) �
hh�ns(rt)ÿ �n� �ns(r� y, t)ÿ �n�irij y j�h

�2(n)

where t is the time in weeks, h� � �ir denotes averaging over
r and h� � �ij y j�h averaging over j y j � h, �n � hns(r, t)ir,
is the average spatial value of ns(r,t) and
�2(n) � h�ns(r, t)ÿ �n�2ir is the spatial variance of ns(r,t).
The spatial distribution of the French population has
been obtained from the French Institut Gëographique
National (last 1990 census survey). The correlations in
ns(r,t) can be reasonably well characterized by Cs(h, t)5h�

with � � 0.04�0.03, that is, a £at correlation function.

This observation is con¢rmed when the same quantity,
Cs(h,t), is plotted for the whole data set (¢gure 3). The
best global ¢t of the type for the cloud of points repre-
sented in ¢gure 3 is for � � ÿ0.05� 0.06. This result
suggests that the distribution of cases is randomly distrib-
uted over the territory, with the number of cases in each
patch being roughly proportional to the population of the
patch. When the correlations of the raw incidence data
Ns(r,t), rather than those of its normalized value ns(r,t), are
studied, long-range correlations are obtained (Bonabeau
et al. 1998): such long-range correlations re£ect the spatial
structure of the underlying population distribution and
not intrinsic spatial properties of the epidemic. It can
therefore be misleading to use absolute incidence: per
capita incidence data should always be preferred.

3. NULL HYPOTHESIS

A test of the suggestion made in the previous sectionö
that the spread of the epidemic is statistically uniform in
geographic spaceöconsists of studying the empirical rela-
tionship between the epidemic's spatial extent (number of
infected patches) and its incidence (number of cases). The
number of new reported cases per patch, Ns(r,t), implicitly
includes a threshold procedure: only in those regions where
the actual number of cases exceeds some threshold can we
expect reports to be issued. The spatial extent provided by
the GP network may therefore not be the true extent of the
epidemic but rather the number of regions in which the
number of cases has exceeded the threshold. On the basis of
this information, the following null hypothesis can be
tested. Let It be the total number of detected cases at time t
over the whole territory and P the total population. The
null hypothesis assumes that the It detected cases are
randomly distributed in space among all the regions of
linear size s according to their demographic weightsöin
other words, incidence ismerely correlatedwith local popu-
lation density.
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Figure 1. Time-series of the number of
cases of in£uenza reported by the
French network of GPs (Sentinelles)
between 1984 and 1995. Twelve peaks
can be observed. Only the last eight
cycles are used in the study. De¢nition
of a case: sudden appearance of fever
439 ³C, myalgia and respiratory
problems. A total of 166 infecteds have
been tested for an in£uenza virus
during the 1994^1995 epidemic: 94%
had type A viruses (53% H3N2 and
41% H1N1), and 6% had a type B
virus.



In order to simulate this hypothesis, each of the It cases
is assigned to a zone: a zone i (of linear size s around
point ri) is chosen at random, and the case is assigned to
zone i with probability Ps(r)/P; if zone i is rejected,
another zone is picked at random and tested, and this
procedure is repeated until all cases are assigned to a
zone. The relationship found between the size of the
epidemic and its spatial extent observed in the data can
be compared to the one obtained with the shu¥ed data.
This method is similar to the surrogate data method used
in time-series analysis (Theiler et al. 1992): spatially distri-
buting the cases among zones according to their demo-
graphic weights leads by construction to the same spatial
correlations as those observed in the data.

Figure 4 shows the number of infected patches as a func-
tion of the number of reported cases in the data and in1000

simulations of the null hypothesis. One cannot easily discri-
minate between the null hypothesis and the data, except at
the peak of the epidemic, indicating that the epidemic
`spreads' more rapidly than it `builds up' within a given
patch until it reaches its peak, whereas the real spatial
extent of the epidemic saturates at a slightly lower value
thanthe simulatedone. Inboth the data and the simulation,
three regimes are observed: (i) before and after the
epidemic (number of reported cases520), where there is a
close-to-linear relationship between the spatial extent and
the number of cases, (ii) an intermediate phase
(205number of reported cases5200) where the number of
infected patches increases sublinearly with the number of
reported cases, and (iii) the vicinity of the epidemic's peak
(N4200), where the number of infected patches saturates.
The small di¡erence between the real and simulated spatial
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Figure 2. Log^log plot of the spatial
equal-time density^density auto-
correlation function Cs(h,t) of ns(r,t),
the number of reported cases
normalized by the size of the
population, at scale s�20 km. The
eight represented curves correspond to
the peaks of the last eight epidemic
cycles of ¢gure 1. Cs(h,t) can be
reasonably well characterized by
Cs(h, t) / h� with � � 0.04�0.03.

Figure 3. Log^log plot of Cs(h,t) for
the whole 1987^1995 data set. The
best global ¢t of the type Cs(h, t)/ h�

for the cloud of points is for
� � ÿ0.05�0.06.



extent in regime (iii) is likely to result from the following
factor: in the simulation, the spatial extent saturates as the
epidemic covers most of the territory, whereas in reality, it
saturates because the epidemic reaches highly populated
regions where contact rates may be higher, so that the
number of cases increases in these regions more than in
other regions.

4. BASIC REPRODUCTION NUMBER

On the basis of the observations in the previous
sections, it is tempting to conclude that the data re£ect a
random distribution of cases according to demographic
weight, and that the epidemic propagates mainly through
a globally mixing process, possibly because of global
transportation systems (Flahault et al. 1988, 1994). The
dynamics of the global incidence (that is, the total
number of cases over the whole territory) are a mean-
¢eld dynamics de¢ned mainly at the global level under
`homogeneous mixing'. Density dependence seems to play
a role only in the vicinity of the epidemic's peak.When a
region becomes infected, the number of cases in that
region increases, but the macroscopic spread of the
epidemic is more rapid than its microscopic dynamics, so
that a mean-¢eld regime is reached before local dyna-
mical heterogeneities can dominate. Only when the
epidemic reaches its peak do such heterogeneities come
into play, because of the build-up of the epidemic within
densely populated infected patches.

If this theory is valid, the basic reproduction number,
denoted by R0, should not vary signi¢cantly between
patches up to some large population density value, above
which R0 becomes greater. In order to test this prediction,
R0 can be approximated within a discrete time formalism
(where 1 unit�1 week) by R0 � n1=Tn, where Tn is the
number of weeks it takes for the per capita incidence to
be multiplied by n (here, n�2,3) (Dietz 1993). This
approximation results from the fact that the initial steps

of the epidemic can be described by a geometric process
with parameter R0. Regions in which the per capita inci-
dence does not double or triple within the whole epidemic
cycle are not taken into account. More precisely, the
following procedure is applied to estimate R0.

(i) Each cycle of the oscillatory incidence pattern is
studied separately, starting 20 weeks before the peak
of the cycle.

(ii) The ¢rst time, t1, when the per capita incidence n1
becomes greater than or equal to 5�1076 (that is
one case for 2�105 inhabitants), is reported in a
given s-patch (s�20 km) is monitored. Both t1 and n1
are recorded. The doubling time T2 is de¢ned by
T2� t2ÿt1, where t2 is the ¢rst time, if applicable,
when the per capita incidence exceeds 2n1. If the per
capita incidence does not double within the epidemic
cycle, the data corresponding to the patch are
discarded.

(iii) The tripling timeT3 is computed in very much the
same way as the doubling timeT2.T3 is de¢ned by
T3� t37t1, where t3 is the ¢rst time, if applicable,
when the per capita incidence exceeds 3n1. If the per
capita incidence does not triple within the epidemic
cycle, the data corresponding to the patch are
discarded.

We found no simple relationship between population
density (PD, where PD is the average geographic density
within a patch and does not exceed 2500 inhabitants
km72) and R0, as already suggested by numerous authors
(e.g. de Jong et al. 1995). However, larger values of R0 are
obtained for larger values of PD. For 05PD41300
inhabitants kmÿ2, a cloud of R0 values ranging from
1.09^1.732 can be observed. For 13005PD52500
inhabitants kmÿ2, two clearly separated clouds of data
points can be observed, which correspond to (i) regions
where R0 is comparable to the one found for
05PD41300 inhabitants kmÿ2, and (ii) regions where R0
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Figure 4. Number of infected patches
as a function of the number of reported
cases in the data and in 1000 simula-
tions of the null hypothesis. The null
hypothesis consists of assigning cases to
patches in proportion to their demo-
graphic weights. In the empirical data
set, error bars along the x-axis corres-
pond to putting It into bins and
averaging over all data points within
each bin, and error bars along the
y-axis correspond to averaging over all
spatial extents obtained for each bin.
The empirical data set aggregates all
data between 1987 and 1995. Error
bars in the simulated data correspond
to averaging over 1000 simulations.
The spatial scale for both the data and
the simulations is s�20 km.



is larger (R0�2 or 3). Some high-density patches yield
larger R0 estimates than others: because PD is the
average PD within patches, two patches with the same
PD may have quite di¡erent spatial organizations and
contact rates; how the population is spatially distributed
within patches can in£uence R0. Despite the biases
inherent in the computation of R0, the observed di¡er-
ence in R0 between some highly populated regions and
other regions seems to con¢rm that the di¡erence
between the null hypothesis (½ 3) and the data results
from a heterogeneity in contact rates that becomes
apparent only when the epidemic reaches densely popu-
lated regions.

5. DISCUSSION

In order to be completely sure that the apparent global
mixing does not result from the annual £are-up of an
already locally circulating infection (in£uenza can be
maintained in small populations), one would need to
know the antigenic types of all recorded cases, all the
more as in£uenza is subject to antigenic drift. However,
about 15% of all reported cases were tested during the
1994^1995 epidemic cycle and indicate a strong propor-
tion of two type A strains (53% H3N2 and 41% H1N1).
This suggests that most of our analysis should be correct:
models assuming global homogeneous (and instanta-
neous, within a week) geographic mixing are appropriate
to describe the initial spread of the epidemic; geographic
heterogeneities and density dependence play a role only
in the few weeks around the epidemic's peak
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